Molecular Pain最新文献

筛选
英文 中文
Pain and aging: A unique challenge in neuroinflammation and behavior. 疼痛和衰老:神经炎症和行为方面的独特挑战。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231203090
Shishu Pal Singh, Josee Guindon, Prapti H Mody, Gabriela Ashworth, Jonathan Kopel, Sai Chilakapati, Owoicho Adogwa, Volker Neugebauer, Michael D Burton
{"title":"Pain and aging: A unique challenge in neuroinflammation and behavior.","authors":"Shishu Pal Singh, Josee Guindon, Prapti H Mody, Gabriela Ashworth, Jonathan Kopel, Sai Chilakapati, Owoicho Adogwa, Volker Neugebauer, Michael D Burton","doi":"10.1177/17448069231203090","DOIUrl":"10.1177/17448069231203090","url":null,"abstract":"<p><p>Chronic pain is one of the most common, costly, and potentially debilitating health issues facing older adults, with attributable costs exceeding $600 billion annually. The prevalence of pain in humans increases with advancing age. Yet, the contributions of sex differences, age-related chronic inflammation, and changes in neuroplasticity to the overall experience of pain are less clear, given that opposing processes in aging interact. This review article examines and summarizes pre-clinical research and clinical data on chronic pain among older adults to identify knowledge gaps and provide the base for future research and clinical practice. We provide evidence to suggest that neurodegenerative conditions engender a loss of neural plasticity involved in pain response, whereas low-grade inflammation in aging increases CNS sensitization but decreases PNS sensitivity. Insights from preclinical studies are needed to answer mechanistic questions. However, the selection of appropriate aging models presents a challenge that has resulted in conflicting data regarding pain processing and behavioral outcomes that are difficult to translate to humans.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f3/4a/10.1177_17448069231203090.PMC10552461.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10307272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pain-related behavioral and electrophysiological actions of dynorphin A (1-17). dynorphin A的疼痛相关行为和电生理作用(1-17)。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231186592
Justin E LaVigne, Ian M Adams, Marena A Montera, Karin N Westlund, Sascha Ra Alles
{"title":"Pain-related behavioral and electrophysiological actions of dynorphin A (1-17).","authors":"Justin E LaVigne,&nbsp;Ian M Adams,&nbsp;Marena A Montera,&nbsp;Karin N Westlund,&nbsp;Sascha Ra Alles","doi":"10.1177/17448069231186592","DOIUrl":"https://doi.org/10.1177/17448069231186592","url":null,"abstract":"<p><p>Dynorphin A (1-17) (DynA17) has been identified as a key regulator of both sensory and affective dimensions of chronic pain. Following nerve injury, increases in DynA17 have been reported in the spinal and supraspinal areas involved in chronic pain. Blocking these increases provides therapeutic benefits in preclinical chronic pain models. Although heavily characterized at the behavioral level, how DynA17 mediates its effects at the cellular physiological level has not been investigated. In this report, we begin to decipher how DynA17 mediates its direct effects on mouse dorsal root ganglion (DRG) cells and how intrathecal administration modifies a key node in the pain axis, the periaqueductal gray These findings build on the plethora of literature defining DynA17 as a critical neuropeptide in the pathophysiology of chronic pain syndromes.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/fb/10.1177_17448069231186592.PMC10328155.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9763144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Activation of neurons and satellite glial cells in the DRG produces morphine-induced hyperalgesia. 激活 DRG 中的神经元和卫星神经胶质细胞可产生吗啡诱导的痛觉减退。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231181973
Shunsuke Yamakita, Daisuke Fujita, Kazuki Sudo, Daiki Ishikawa, Kohsuke Kushimoto, Yasuhiko Horii, Fumimasa Amaya
{"title":"Activation of neurons and satellite glial cells in the DRG produces morphine-induced hyperalgesia.","authors":"Shunsuke Yamakita, Daisuke Fujita, Kazuki Sudo, Daiki Ishikawa, Kohsuke Kushimoto, Yasuhiko Horii, Fumimasa Amaya","doi":"10.1177/17448069231181973","DOIUrl":"10.1177/17448069231181973","url":null,"abstract":"<p><p>Activation of neurons and glial cells in the dorsal root ganglion is one of the key mechanisms for the development of hyperalgesia. The aim of the present study was to examine the role of neuroglial activity in the development of opioid-induced hyperalgesia. Male rats were treated with morphine daily for 3 days. The resultant phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in the dorsal root ganglion was analyzed by immunohistochemistry and Western blotting. Pain hypersensitivity was analyzed using behavioral studies. The amount of cytokine expression in the dorsal root ganglion was also analyzed. Repeated morphine treatment induced hyperalgesia and marked induction of phosphorylated ERK1/2 in the neurons and satellite glial cells on day 3. An opioid receptor antagonist, toll like receptor-4 inhibitor, MAP/ERK kinase (MEK) inhibitor and gap junction inhibitor inhibited morphine-induced hyperalgesia and ERK1/2 phosphorylation. Morphine treatment induced alteration of cytokine expression, which was inhibited by the opioid receptor antagonist, toll like receptor-4 inhibitor, MEK inhibitor and gap junction inhibitor. Dexamethasone inhibited morphine-induced hyperalgesia and ERK1/2 phosphorylation after morphine treatment. The peripherally restricted opioid receptor antagonist, methylnaltrexone, inhibited hyperalgesia and ERK1/2 phosphorylation. Morphine activates ERK1/2 in neurons and satellite glial cells in the dorsal root ganglion via the opioid receptor and toll like receptor-4. ERK1/2 phosphorylation is gap junction-dependent and is associated with the alteration of cytokine expression. Inhibition of neuroinflammation by activation of neurons and glia might be a promising target to prevent opioid-induced hyperalgesia.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/17/4c/10.1177_17448069231181973.PMC10291868.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9698902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Notice. 撤回通知。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231155072
{"title":"Retraction Notice.","authors":"","doi":"10.1177/17448069231155072","DOIUrl":"10.1177/17448069231155072","url":null,"abstract":"","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/e0/10.1177_17448069231155072.PMC10037720.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9225553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factor ETS proto-oncogene 1 contributes to neuropathic pain by regulating histone deacetylase 1 in primary afferent neurons. 转录因子 ETS 原癌基因 1 通过调节初级传入神经元中的组蛋白去乙酰化酶 1 促成神经性疼痛。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231152125
Hong-Li Zheng, Shi-Yu Sun, Tong Jin, Ming Zhang, Ying Zeng, Qiaoqiao Liu, Kehui Yang, Runa Wei, Zhiqiang Pan, Fuqing Lin
{"title":"Transcription factor ETS proto-oncogene 1 contributes to neuropathic pain by regulating histone deacetylase 1 in primary afferent neurons.","authors":"Hong-Li Zheng, Shi-Yu Sun, Tong Jin, Ming Zhang, Ying Zeng, Qiaoqiao Liu, Kehui Yang, Runa Wei, Zhiqiang Pan, Fuqing Lin","doi":"10.1177/17448069231152125","DOIUrl":"10.1177/17448069231152125","url":null,"abstract":"<p><p>Nerve injury can induce aberrant changes in ion channels, enzymes, and cytokines/chemokines in the dorsal root ganglia (DRGs); these changes are due to or at least partly governed by transcription factors that contribute to the genesis of neuropathic pain. However, the involvement of transcription factors in neuropathic pain is poorly understood. In this study, we report that transcription factor (TF) ETS proto-oncogene 1 (ETS1) is required for the initiation and development of neuropathic pain. Sciatic nerve chronic constrictive injury (CCI, a clinical neuropathic pain model) increases ETS1 expression in the injured male mouse DRG. Blocking this upregulation alleviated CCI-induced mechanical allodynia and thermal hyperalgesia, with no apparent effect on locomotor function. Mimicking this upregulation results in the genesis of nociception hypersensitivity; mechanistically, nerve injury-induced ETS1 upregulation promotes the expression of histone deacetylase 1 (HDAC1, a key initiator of pain) via enhancing its binding activity to the HDAC1 promotor, leading to the elevation of spinal central sensitization, as evidenced by increased expression of p-ERK1/2 and GFAP in the dorsal spinal horn. It appears that the ETS1/HDAC1 axis in DRG may have a critical role in the development and maintenance of neuropathic pain, and ETS1 is a potential therapeutic target in neuropathic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c3/7a/10.1177_17448069231152125.PMC9909074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9295119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-nociceptive and nociceptive-like trigeminal Aβ-afferent neurons of rats: Distinct electrophysiological properties, mechanical and chemical sensitivity. 大鼠非伤害性和样伤害性三叉神经a β传入神经元:不同的电生理特性、机械和化学敏感性。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069221148958
Ryan Vaden, Jianguo Gu
{"title":"Non-nociceptive and nociceptive-like trigeminal Aβ-afferent neurons of rats: Distinct electrophysiological properties, mechanical and chemical sensitivity.","authors":"Ryan Vaden,&nbsp;Jianguo Gu","doi":"10.1177/17448069221148958","DOIUrl":"https://doi.org/10.1177/17448069221148958","url":null,"abstract":"<p><p>The role of Aβ-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aβ-afferent involvement in nociception. Recently, we have characterized Aβ-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aβ-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aβ-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (I<sub>MA</sub>) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aβ-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aβ-afferent neurons.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/e2/10.1177_17448069221148958.PMC9829874.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9953015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Saltatory conduction and intrinsic electrophysiological properties at the nodes of ranvier of Aα/β-afferent fibers and Aα-efferent fibers in rat sciatic nerves. 大鼠坐骨神经中Aα/β-传入纤维和Aα-传出纤维ranvier节的盐传导和内在电生理特性。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231187366
Sotatsu Tonomura, Jianguo Gu
{"title":"Saltatory conduction and intrinsic electrophysiological properties at the nodes of ranvier of Aα/β-afferent fibers and Aα-efferent fibers in rat sciatic nerves.","authors":"Sotatsu Tonomura,&nbsp;Jianguo Gu","doi":"10.1177/17448069231187366","DOIUrl":"10.1177/17448069231187366","url":null,"abstract":"<p><p>Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/β-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (NRs) of these sciatic nerve fibers have not been directly studied. We used ex vivo sciatic nerve preparations from rats and applied patch-clamp recordings at the NRs of both Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves to characterize their saltatory conduction and intrinsic electrophysiological properties. The velocity and frequency of saltatory conduction in both types of fibers were similar. Resting membrane potentials (RMPs), input resistance, action potential (AP) threshold, and AP rheobase were also not significantly different at the NRs of the two types of fibers in the sciatic nerves. In comparison with Aα/β-afferent fibers, Aα-efferent fibers in the sciatic nerves show higher amplitude and broader width of APs at their NRs. At the NRs of both types of fibers, depolarizing voltages evoked transient inward currents followed by non-inactivating outward currents, and the inward currents and non-inactivating outward currents at the NRs were not significantly different between the two types of fibers. Using AP-clamp, inward currents during AP upstroke were found to be insignificant difference, but amplitudes of non-inactivating outward currents during AP repolarization were significantly lower at the NRs of Aα-efferent fibers than at the NRs of Aα/β-afferent fibers in the sciatic nerves. Collectively, saltatory conduction, ionic currents, and intrinsic electrophysiological properties at the NRs of Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves are generally similar, but some differences were also observed.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8b/4d/10.1177_17448069231187366.PMC10413906.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9968013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silencing of TRPV4-expressing sensory neurons attenuates temporomandibular disorders pain. 沉默表达trpv4的感觉神经元可减轻颞下颌疾病的疼痛。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231185696
Fabiana C Dias, Zilong Wang, Garrett Scapellato, Yong Chen
{"title":"Silencing of TRPV4-expressing sensory neurons attenuates temporomandibular disorders pain.","authors":"Fabiana C Dias,&nbsp;Zilong Wang,&nbsp;Garrett Scapellato,&nbsp;Yong Chen","doi":"10.1177/17448069231185696","DOIUrl":"https://doi.org/10.1177/17448069231185696","url":null,"abstract":"<p><p>Identification of potential therapeutic targets is needed for temporomandibular disorders (TMD) pain, the most common form of orofacial pain, because current treatments lack efficacy. Considering TMD pain is critically mediated by the trigeminal ganglion (TG) sensory neurons, functional blockade of nociceptive neurons in the TG may provide an effective approach for mitigating pain associated with TMD. We have previously shown that TRPV4, a polymodally-activated ion channel, is expressed in TG nociceptive neurons. Yet, it remains unexplored whether functional silencing of TRPV4-expressing TG neurons attenuates TMD pain. In this study, we demonstrated that co-application of a positively charged, membrane-impermeable lidocaine derivative QX-314 with the TRPV4 selective agonist GSK101 suppressed the excitability of TG neurons. Moreover, co-administration of QX-314 and GSK101 into the TG significantly attenuated pain in mouse models of temporomandibular joint (TMJ) inflammation and masseter muscle injury. Collectively, these results suggest TRPV4-expressing TG neurons represent a potential target for TMD pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/d3/10.1177_17448069231185696.PMC10288408.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10086699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Rac1/PAK1 signaling contributes to bone cancer pain by Regulation dendritic spine remodeling in rats". “Rac1/PAK1信号通过调节大鼠树突棘重塑而导致骨癌症疼痛”更正。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231182501
{"title":"Corrigendum to \"Rac1/PAK1 signaling contributes to bone cancer pain by Regulation dendritic spine remodeling in rats\".","authors":"","doi":"10.1177/17448069231182501","DOIUrl":"10.1177/17448069231182501","url":null,"abstract":"","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469238/pdf/10.1177_17448069231182501.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10522497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptome analysis reveals dysregulation of inflammatory and neuronal function in dorsal root ganglion of paclitaxel-induced peripheral neuropathy rats. 转录组分析显示紫杉醇诱导的周围神经病变大鼠背根神经节炎症和神经元功能失调。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069221106167
Wuping Sun, Shaomin Yang, Songbin Wu, Xiyuan Ba, Donglin Xiong, Lizu Xiao, Yue Hao
{"title":"Transcriptome analysis reveals dysregulation of inflammatory and neuronal function in dorsal root ganglion of paclitaxel-induced peripheral neuropathy rats.","authors":"Wuping Sun,&nbsp;Shaomin Yang,&nbsp;Songbin Wu,&nbsp;Xiyuan Ba,&nbsp;Donglin Xiong,&nbsp;Lizu Xiao,&nbsp;Yue Hao","doi":"10.1177/17448069221106167","DOIUrl":"https://doi.org/10.1177/17448069221106167","url":null,"abstract":"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) is the most common side-effect of anti-cancer therapy. To date, there are no clinically effective analgesics that could prevent and treat CIPN. However, the exact pathogenesis of CIPN is still unclear. In the present study, we use the paclitaxel-induced peripheral neuropathy (PIPN) model, aiming to better understand the transcriptomic level of the Dorsal root ganglia (DRG) neurons in rats with PIPN. mRNA from each DRG sample was reverse transcribed to cDNA and sequenced using next-generation high throughput sequencing technology. Quantitative RT-PCR verification was used to confirm the identified Differentially expressed genes (DEGs) in the DRG of PIPN rats. RNAseq results have identified 384 DEGs (adjusted <i>P-value</i> < 0.05; fold change ≥ 2) in the DRG of rats 14 days after paclitaxel injection in total, including 97 up-regulated genes, and 287 down-regulated genes. GO analysis revealed that these DEGs were majorly involved in neuropeptide activity, chemokine receptor activity, defense response, and inflammatory response. Kyoto Encyclopedia of Gene and Genomes analysis showed that neuroactive ligand-receptor interaction and cytokine-cytokine receptor interaction were involved in sensory neurons of rats with PIPN. Besides, comparison analysis identified that 11 DEGs in the PIPN model are shared with either inflammatory pain (Ces1d, Cfd, Retn, and Fam150b) or neuropathic pain (Atf3, Csrp3, Ecel1, Gal, Sprr1a, Tgm1, and Vip). Quantitative RT-PCR results also confirmed the validation of the RNAseq data. These results suggested that neuroactive ligand-receptor interaction and cytokine-cytokine receptor interaction are majorly involved in sensory neurons of rats with PIPN. Immune, inflammatory responses and neuron functional changes are the major pathogenesis of PIPN. Paclitaxel-induced peripheral neuropathy has shared characteristics with both inflammatory pain and neuropathic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/92/4c/10.1177_17448069221106167.PMC10227877.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9549497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信