Nature CatalysisPub Date : 2024-06-24DOI: 10.1038/s41929-024-01179-4
Zhi-Ming Zhang, Tao Wang, Yu-Chen Cai, Xiao-Yu Li, Jin-Yu Ye, Yao Zhou, Na Tian, Zhi-You Zhou, Shi-Gang Sun
{"title":"Probing electrolyte effects on cation-enhanced CO2 reduction on copper in acidic media","authors":"Zhi-Ming Zhang, Tao Wang, Yu-Chen Cai, Xiao-Yu Li, Jin-Yu Ye, Yao Zhou, Na Tian, Zhi-You Zhou, Shi-Gang Sun","doi":"10.1038/s41929-024-01179-4","DOIUrl":"10.1038/s41929-024-01179-4","url":null,"abstract":"Tuning the properties of the electric double layer via cations is a recognized approach for improving the efficiency of the CO2 reduction reaction (CO2RR). However, the mechanism behind cation-enhanced CO2RR kinetics remains puzzling. Here we identify the key intermediate, adsorbed CO2, via in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy on Cu in an acidic electrolyte, confirming it appears only in the presence of cations. Different from prevalent viewpoints, time-resolved infrared spectra reveal that Li+ enhances CO2 adsorption more effectively than other larger cations but slows down the hydrogenation kinetics of CO2. Ab initio molecular dynamics simulations and spectroscopic features of water suggest that rigid water networks around Li+ impedes the hydrogen of water to approach adsorbed CO2. In contrast, more flexible water networks around larger cations (for example, Na+) facilitate water reorientation and enhance hydrogen proximity to CO2, thereby improving CO2RR. This study highlights the essential role of interfacial water structure in CO2RR efficiency. CO2 electroreduction is promoted by alkali cations in the electrolyte, but the precise mechanism by which this occurs is not clear. Now in situ infrared spectroscopy and ab initio molecular dynamics are combined to elucidate the specific role of alkali cations and their trends.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"807-817"},"PeriodicalIF":42.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-06-14DOI: 10.1038/s41929-024-01169-6
Yuhang Dai, Ruihu Lu, Chengyi Zhang, Jiantao Li, Yifei Yuan, Yu Mao, Chumei Ye, Zhijun Cai, Jiexin Zhu, Jinghao Li, Ruohan Yu, Lianmeng Cui, Siyu Zhao, Qinyou An, Guanjie He, Geoffrey I. N. Waterhouse, Paul R. Shearing, Yang Ren, Jun Lu, Khalil Amine, Ziyun Wang, Liqiang Mai
{"title":"Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries","authors":"Yuhang Dai, Ruihu Lu, Chengyi Zhang, Jiantao Li, Yifei Yuan, Yu Mao, Chumei Ye, Zhijun Cai, Jiexin Zhu, Jinghao Li, Ruohan Yu, Lianmeng Cui, Siyu Zhao, Qinyou An, Guanjie He, Geoffrey I. N. Waterhouse, Paul R. Shearing, Yang Ren, Jun Lu, Khalil Amine, Ziyun Wang, Liqiang Mai","doi":"10.1038/s41929-024-01169-6","DOIUrl":"10.1038/s41929-024-01169-6","url":null,"abstract":"Rechargeable aqueous zinc-ion batteries (AZIBs), renowned for their safety, high energy density and rapid charging, are prime choices for grid-scale energy storage. Historically, ion-shuttling models centring on ion-migration behaviour have dominated explanations for charge/discharge processes in aqueous batteries, like classical ion insertion/extraction and pseudocapacitance mechanisms. However, these models struggle to account for the exceptional performance of AZIBs compared to other aqueous metal-ion batteries. Here we present a catalysis model elucidating the Zn2+ anomaly in aqueous batteries, explaining it through the concept of adsorption in catalysis. Such behaviour can serve the charge/discharge role, predominantly dictated by solvated metal cations and cathode materials. First-principles calculations suggest optimal adsorption/desorption behaviour (water dissociation process) with the Zn2+–vanadium nitride (VN) combination. Experimentally, AZIBs implementing VN cathodes demonstrate fast-charging kinetics, showing a capacity of 577.1 mAh g−1 at a current density of 300,000 mA g−1. The grasp of catalysis steps within AZIBs can drive solutions beyond state-of-the-art fast-charging batteries. Aqueous Zn-ion batteries are promising devices but their energy storage mechanism remains elusive. Now it is shown that these involve a catalytic mechanism based on water dissociation.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"776-784"},"PeriodicalIF":42.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-06-14DOI: 10.1038/s41929-024-01177-6
Hendrik H. Heenen, Hemanth S. Pillai, Karsten Reuter, Vanessa J. Bukas
{"title":"Exploring mesoscopic mass transport effects on electrocatalytic selectivity","authors":"Hendrik H. Heenen, Hemanth S. Pillai, Karsten Reuter, Vanessa J. Bukas","doi":"10.1038/s41929-024-01177-6","DOIUrl":"10.1038/s41929-024-01177-6","url":null,"abstract":"Electrocatalytic selectivity is often discussed at the atomic level on the basis of the active site, while ignoring more subtle effects of mesoscopic mass transport. Here we show how transport controls selectivity through the exchange of surface-bound reaction intermediates between the electrode and bulk electrolyte. We argue that the arising kinetic competition changes with the catalyst’s surface area and can become relevant for technologically important reactions including, for example, different products during the electrochemical CO2 reduction on Cu-based catalysts. Combining microkinetic and transport modelling in a multi-scale approach, we specifically explore and quantify this effect for various showcase examples in the experimental literature. Despite its simplicity, our model correctly reproduces selectivity trends with respect to catalyst roughness on all meso-, micro- and atomic scales. The resulting insight provides an alternative or, at least, complementary explanation to changes in electrocatalytic selectivity that have otherwise been attributed to nano-structuring of active sites or electronic effects due to doping or alloying. Mesoscopic mass transport is often ignored but it can influence electrocatalytic processes. This Analysis introduces a simple multi-scale model that couples diffusion to electrochemical surface kinetics and shows how mesoscopic mass transport determines product selectivity through catalyst morphology.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"847-854"},"PeriodicalIF":42.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-024-01177-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-06-07DOI: 10.1038/s41929-024-01168-7
Caiwu Liang, Reshma R. Rao, Katrine L. Svane, Joseph H. L. Hadden, Benjamin Moss, Soren B. Scott, Michael Sachs, James Murawski, Adrian Malthe Frandsen, D. Jason Riley, Mary P. Ryan, Jan Rossmeisl, James R. Durrant, Ifan E. L. Stephens
{"title":"Unravelling the effects of active site density and energetics on the water oxidation activity of iridium oxides","authors":"Caiwu Liang, Reshma R. Rao, Katrine L. Svane, Joseph H. L. Hadden, Benjamin Moss, Soren B. Scott, Michael Sachs, James Murawski, Adrian Malthe Frandsen, D. Jason Riley, Mary P. Ryan, Jan Rossmeisl, James R. Durrant, Ifan E. L. Stephens","doi":"10.1038/s41929-024-01168-7","DOIUrl":"10.1038/s41929-024-01168-7","url":null,"abstract":"Understanding what controls the reaction rate on iridium-based catalysts is central to designing better electrocatalysts for the water oxidation reaction in proton exchange membrane electrolysers. Here we quantify the densities of redox-active centres and probe their binding strengths on amorphous IrOx and rutile IrO2 using operando time-resolved optical spectroscopy. We establish a quantitative experimental correlation between the intrinsic reaction rate and the active-state energetics. We find that adsorbed oxygen species, *O, formed at water oxidation potentials, exhibit repulsive adsorbate–adsorbate interactions. Increasing their coverage weakens their binding, thereby promoting O–O bond formation, which is the rate-determining step. These analyses suggest that although amorphous IrOx exhibits a higher geometric current density, the intrinsic reaction rates per active state on IrOx and IrO2 are comparable at given potentials. Finally, we present a modified volcano plot that elucidates how the intrinsic water oxidation kinetics can be increased by optimizing both the binding energy and the interaction strength between the catalytically active states. Iridium oxide is the state-of-the-art catalyst for water oxidation in an acidic electrolyte. Now amorphous and crystalline iridium oxides are studied using operando time-resolved optical spectroscopy, together with other techniques, to reveal the nature and density of active centres and the role of adsorbate–adsorbate interactions.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"763-775"},"PeriodicalIF":42.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-024-01168-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-06-05DOI: 10.1038/s41929-024-01173-w
Haocheng Xiong, Peiping Yu, Kedang Chen, Shike Lu, Qikun Hu, Tao Cheng, Bingjun Xu, Qi Lu
{"title":"Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt","authors":"Haocheng Xiong, Peiping Yu, Kedang Chen, Shike Lu, Qikun Hu, Tao Cheng, Bingjun Xu, Qi Lu","doi":"10.1038/s41929-024-01173-w","DOIUrl":"10.1038/s41929-024-01173-w","url":null,"abstract":"Electrochemical conversion of CO to chemicals containing C–N bonds offers an appealing route to store renewable electricity and mitigate CO2 emission, as CO2 can be efficiently transformed to CO. Previous electrocatalysis research has primarily focused on cathodic reactions, which are impeded by the competing hydrogen evolution reaction and limited electron efficiency. Here we present a urea synthesis approach via electrocatalytic oxidative coupling between CO and NH3 on commercial Pt catalysts. We demonstrate an optimal selectivity of approximately 70% for urea and remain above 50% throughout a wide potential window with an electrocatalytic C–N bond formation rate of up to 100 mmol h−1 gcatalyst−1. In mechanistic investigations, we propose that the oxidative coupling of CO and NH3 on Pt leads to cyanate formation, followed by the Wöhler reaction to form urea. This approach offers a practical route for urea production with high electron efficiency by enabling Pt-catalysed reactions between CO and NH3. Electrocatalytic urea formation most commonly involves the co-reduction of NOx species with CO2. This limits overall energy efficiency as commodity-scale NOx is produced from N2 via NH3. The swings in nitrogen oxidation state can be minimized through direct oxidative electrocatalytic reaction of CO and NH3 to urea, as shown in this study.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"785-795"},"PeriodicalIF":42.8,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-06-03DOI: 10.1038/s41929-024-01167-8
Jiashun Liang, Shenzhou Li, Xuan Liu, Yangyang Wan, Yu Xia, Hao Shi, Siyang Zhang, Hsing-Lin Wang, Gang Lu, Gang Wu, Yunhui Huang, Qing Li
{"title":"Gas-balancing adsorption strategy towards noble-metal-based nanowire electrocatalysts","authors":"Jiashun Liang, Shenzhou Li, Xuan Liu, Yangyang Wan, Yu Xia, Hao Shi, Siyang Zhang, Hsing-Lin Wang, Gang Lu, Gang Wu, Yunhui Huang, Qing Li","doi":"10.1038/s41929-024-01167-8","DOIUrl":"10.1038/s41929-024-01167-8","url":null,"abstract":"The preparation of noble metal nanowire electrocatalysts is greatly limited by the thermodynamically symmetric growth of face-centred-cubic structures. Here we report a gas-balancing adsorption strategy to prepare ultrathin palladium-, platinum- and gold-based nanowires (diameter < 2 nm) by controlling the competitive adsorption of in situ-generated H2 and CO. We prepare a library of 43 nanowires consisting of the three above-mentioned noble metals as hosts and 14 metals as guests. The ternary Pd85Pt8Ni7H41 nanowires with interstitial hydrogen exhibit impressive mass and specific activities of $$11.1 , {rm{A}},{rm{mg}}_{{rm{PGM}}}^{-1}$$ and 13.9 mA cm−2, respectively, for the oxygen reduction reaction at 0.9 VRHE in alkali. Operando X-ray absorption spectroscopy demonstrates breathing-like Pd–Pd bond length and strain changes at the applied potential, with Pd85Pt8Ni7H41 nanowires exhibiting larger compressive strain at relevant potentials, as well as low oxygen coverage. Theoretical calculations suggest that the interstitial hydrogen induces an s–d orbital interaction between palladium and hydrogen, which enhances the activity of the oxygen reduction reaction. The Pd85Pt8Ni7H41 nanowires can generate a high power density of 0.87 W cm−2 in H2/air (CO2-free) at 70 °C in an anion-exchange membrane fuel cell. Nanostructured design of mono- and multimetallic particles can be leveraged to achieve highly active catalysts. Now, a gas-balancing adsorption strategy is presented to prepare alloy nanowires with diameter of around 1 nm, whereby resulting catalysts achieve excellent performance for both anion- and proton-exhange membrane fuel cells.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 6","pages":"719-732"},"PeriodicalIF":42.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-05-29DOI: 10.1038/s41929-024-01163-y
Gina Dotta, Alejandro J. Vila
{"title":"Order matters in evolution","authors":"Gina Dotta, Alejandro J. Vila","doi":"10.1038/s41929-024-01163-y","DOIUrl":"10.1038/s41929-024-01163-y","url":null,"abstract":"The understanding of protein evolution is a central challenge in biology. Now, the evolution of a β-lactamase in vitro reveals that the total effect of mutations can change the rate-limiting step of the catalytic mechanism.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 5","pages":"467-468"},"PeriodicalIF":37.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}