Nature Catalysis最新文献

筛选
英文 中文
In situ lysosomal proteomics enabled by bioorthogonal photocatalytic proximity labelling 通过生物正交光催化接近标记实现原位溶酶体蛋白质组学
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-13 DOI: 10.1038/s41929-025-01298-6
Yan Zhang, Ziqi Liu, Nan Zhou, Fuhu Guo, Haotian Guo, Xinyue Chen, Shengnan Qin, Peng R. Chen, Xinyuan Fan
{"title":"In situ lysosomal proteomics enabled by bioorthogonal photocatalytic proximity labelling","authors":"Yan Zhang, Ziqi Liu, Nan Zhou, Fuhu Guo, Haotian Guo, Xinyue Chen, Shengnan Qin, Peng R. Chen, Xinyuan Fan","doi":"10.1038/s41929-025-01298-6","DOIUrl":"10.1038/s41929-025-01298-6","url":null,"abstract":"In situ deciphering of lysosome proteomes is crucial for understanding cellular processes and diseases, but is challenging due to its digestive, acidic environment that renders proximity labelling enzymes incompatible. Here we have developed a photocatalytic proximity labelling technique, CAT-Lyso, for in situ lysosomal proteomics. By employing a lysosome-targeting photocatalyst/thioquinone methide labelling probe pair, CAT-Lyso enables the generation of a reactive thioquinone methide intermediate via photoredox catalysis, facilitating efficient lysosomal proteome labelling in diverse cell lines, including hard-to-transfect macrophages (RAW264.7) and B lymphocytes (Raji). CAT-Lyso successfully identified cell type-specific lysosomal proteomic patterns and uncovered previously unrecognized lysosomal proteins, such as SCAMP3, NAGPA, GLG1 and MFSD14B. Furthermore, CAT-Lyso enabled quantitative profiling of lysosomal proteome dynamics under perturbations such as rapamycin-mediated mTOR inhibition, revealing pronounced ferritinophagy that evokes a coordinated labile iron-resisting program in cancer cells. With its in situ labelling, non-genetic operation, high specificity and photocontrollability, CAT-Lyso provides a powerful tool for investigating lysosome proteome dynamics in living systems. In situ profiling of lysosomal proteomes is impeded by the acidic and digestive environment of lysosomes. Now, a bioorthogonal photocatalytic system (CAT-Lyso) is developed that is compatible with these conditions, enabling the proximity labelling of lysosomal proteomes within living cells.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"162-177"},"PeriodicalIF":42.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A polyketide-based biosynthetic platform for diols, amino alcohols and hydroxy acids 二醇、氨基醇和羟基酸的聚酮基生物合成平台
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-11 DOI: 10.1038/s41929-025-01299-5
Qingyun Dan, Yan Chiu, Namil Lee, Jose Henrique Pereira, Behzad Rad, Xixi Zhao, Kai Deng, Yiou Rong, Chunjun Zhan, Yan Chen, Seokjung Cheong, Chenyi Li, Jennifer W. Gin, Andria Rodrigues, Trent R. Northen, Tyler W. H. Backman, Edward E. K. Baidoo, Christopher J. Petzold, Paul D. Adams, Jay D. Keasling
{"title":"A polyketide-based biosynthetic platform for diols, amino alcohols and hydroxy acids","authors":"Qingyun Dan, Yan Chiu, Namil Lee, Jose Henrique Pereira, Behzad Rad, Xixi Zhao, Kai Deng, Yiou Rong, Chunjun Zhan, Yan Chen, Seokjung Cheong, Chenyi Li, Jennifer W. Gin, Andria Rodrigues, Trent R. Northen, Tyler W. H. Backman, Edward E. K. Baidoo, Christopher J. Petzold, Paul D. Adams, Jay D. Keasling","doi":"10.1038/s41929-025-01299-5","DOIUrl":"10.1038/s41929-025-01299-5","url":null,"abstract":"Medium- and branched-chain diols and amino alcohols are important industrial solvents, polymer building blocks, cosmetics and pharmaceutical ingredients, yet biosynthetically challenging to produce. Here we present an approach that uses a modular polyketide synthase (PKS) platform for the efficient production of these compounds. This platform takes advantage of a versatile loading module from the rimocidin PKS and nicotinamide adenine dinucleotide phosphate-dependent terminal thioreductases. Reduction of the terminal aldehyde with alcohol dehydrogenases enables the production of diols, oxidation enables the production of hydroxy acids and specific transaminases allow the production of various amino alcohols. Furthermore, replacement of the malonyl-coenzyme A-specific acyltransferase in the extension module with methyl- or ethylmalonyl-coenzyme A-specific acyltransferase enables the production of branched-chain diols, amino alcohols and carboxylic acids in high titres. Use of our PKS platform in Streptomyces albus demonstrated the high tunability and efficiency of the platform. Medium- and branched-chain diols and amino alcohols are important industrial feedstocks, but they are biosynthetically challenging to produce. Here the authors introduce a modular polyketide synthase platform for the efficient production of these compounds.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"147-161"},"PeriodicalIF":42.8,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01299-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal in situ X-ray mechanistic studies of a bimetallic oxide electrocatalyst in alkaline media 碱性介质中双金属氧化物电催化剂的多模态x射线原位机理研究
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-07 DOI: 10.1038/s41929-025-01289-7
Jason J. Huang, Yao Yang, Daniel Weinstock, Colin R. Bundschu, Qihao Li, Suchismita Sarker, Jacob P. C. Ruff, Tomás A. Arias, Héctor D. Abruña, Andrej Singer
{"title":"Multimodal in situ X-ray mechanistic studies of a bimetallic oxide electrocatalyst in alkaline media","authors":"Jason J. Huang, Yao Yang, Daniel Weinstock, Colin R. Bundschu, Qihao Li, Suchismita Sarker, Jacob P. C. Ruff, Tomás A. Arias, Héctor D. Abruña, Andrej Singer","doi":"10.1038/s41929-025-01289-7","DOIUrl":"10.1038/s41929-025-01289-7","url":null,"abstract":"Co–Mn spinel oxide is a promising next-generation electrocatalyst that has previously shown oxygen reduction reaction activity that rivals that of Pt in alkaline fuel cells. Although the performance is encouraging, understanding the catalytic mechanisms in the oxygen reduction reaction is critical to advancing and enabling low-cost alkaline fuel cell technology. Here we use multimodal in situ synchrotron X-ray diffraction and resonant elastic X-ray scattering to investigate the interplay between the structure and oxidation state of a Co–Mn spinel oxide electrocatalyst. We show that the Co–Mn spinel oxide electrocatalyst exhibits a kinetically limited cubic-to-tetragonal phase transition, which is correlated to a reduction in both the Co and Mn valence states. Additionally, the electrocatalyst exhibits a reversible and rapid increase in tensile strain at low potentials during cyclic voltammetry, and joint density-functional theory is used to provide insight into how reactive adsorbates induce strain in spinel oxide nanoparticles. Co–Mn spinel oxides are the most promising precious-metal-free catalysts for oxygen reduction in alkaline electrolytes, but their structure–activity properties are not yet fully understood. Now, in situ XRD and REXS performed on MnCo2O4 identify surface tensile strain at low potentials and a reversible transformation between cubic and tetragonal structures.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"116-125"},"PeriodicalIF":42.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143258669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron-catalysed alkenylzincation of allenes via electrophilicity reversal 通过亲电性反转铁催化烯基锌化
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-07 DOI: 10.1038/s41929-025-01293-x
Jun-Jia Chen, Mu-Han Guan, Peng He, Ming-Yao Huang, Xin-Yu Zhang, Shou-Fei Zhu
{"title":"Iron-catalysed alkenylzincation of allenes via electrophilicity reversal","authors":"Jun-Jia Chen, Mu-Han Guan, Peng He, Ming-Yao Huang, Xin-Yu Zhang, Shou-Fei Zhu","doi":"10.1038/s41929-025-01293-x","DOIUrl":"10.1038/s41929-025-01293-x","url":null,"abstract":"Given the structural characteristics of allenes, nucleophilic additions usually occur at the electron-deficient central carbon atom of allene. Here we report an iron-catalysed alkenylzincation reaction of terminal allenes that shows abnormal regioselectivity, wherein the electrophilic zinc moiety from an organozinc reagent is incorporated at the electron-deficient central carbon atom of the allene. This alkenylzincation reaction shows broad functional group compatibility and excellent regio- and stereoselectivities. Using this method, we accessed cis-1,4-dienylzinc reagents and their corresponding polysubstituted 1,4-diene derivatives, which are notoriously challenging to prepare via conventional routes. Mechanistic studies revealed that an unexpected reversal of the electrophilicity of the allene carbons is realized through the electron donation from the Fe(0) to the allene via π back-bonding, resulting in the observed abnormal regioselectivity. Allenes are versatile substrates in synthetic chemistry. Now an iron catalyst enables unusual regioselectivity by mediating an electrophilicity reversal of allenes for stereoselective alkenylzincation reactions affording 1,4-diene zinc products.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"178-186"},"PeriodicalIF":42.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143258734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying a highly efficient molecular photocatalytic CO2 reduction system via descriptor-based high-throughput screening 通过基于描述符的高通量筛选,确定了一种高效的分子光催化CO2还原系统
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-07 DOI: 10.1038/s41929-025-01291-z
Yangguang Hu, Can Yu, Song Wang, Qian Wang, Marco Reinhard, Guozhen Zhang, Fei Zhan, Hao Wang, Dean Skoien, Thomas Kroll, Peiyuan Su, Lei Li, Aobo Chen, Guangyu Liu, Haifeng Lv, Dimosthenis Sokaras, Chao Gao, Jun Jiang, Ye Tao, Yujie Xiong
{"title":"Identifying a highly efficient molecular photocatalytic CO2 reduction system via descriptor-based high-throughput screening","authors":"Yangguang Hu, Can Yu, Song Wang, Qian Wang, Marco Reinhard, Guozhen Zhang, Fei Zhan, Hao Wang, Dean Skoien, Thomas Kroll, Peiyuan Su, Lei Li, Aobo Chen, Guangyu Liu, Haifeng Lv, Dimosthenis Sokaras, Chao Gao, Jun Jiang, Ye Tao, Yujie Xiong","doi":"10.1038/s41929-025-01291-z","DOIUrl":"10.1038/s41929-025-01291-z","url":null,"abstract":"Molecular metal complexes offer opportunities for developing artificial photocatalytic systems. The search for efficient molecular photocatalytic systems, which involves a vast number of photosensitizer–catalyst combinations, is extremely time consuming via a conventional trial and error approach, while high-throughput virtual screening has not been feasible owing to a lack of reliable descriptors. Here we present a machine learning-accelerated high-throughput screening protocol for molecular photocatalytic CO2 reduction systems using multiple descriptors incorporating the photosensitization, electron transfer and catalysis steps. The protocol rapidly screened 3,444 molecular photocatalytic systems including 180,000 conformations of photosensitizers and catalysts during their interaction, enabling the prediction of six promising candidates. Then, we experimentally validated the screened photocatalytic systems, and the optimal one achieved a turnover number of 4,390. Time-resolved spectroscopy and first-principles calculation further validated not only the relevance of the descriptors within certain screening scopes but also the role of dipole coupling in triggering dynamic catalytic reaction processes. High-throughput computational screening of multicomponent molecular photocatalytic systems offers a strategy to minimize the screening of large numbers of photosensitizer–catalyst combinations. Here a machine learning-accelerated approach using multiple descriptors shows strong predictive power in experimentally validated systems for CO2 reduction.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"126-136"},"PeriodicalIF":42.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143258670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iminium catalysis in natural Diels–Alderase 天然Diels-Alderase的氨催化作用
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-06 DOI: 10.1038/s41929-025-01294-w
Zuodong Sun, Xin Zang, Qingyang Zhou, Masao Ohashi, K. N. Houk, Jiahai Zhou, Yi Tang
{"title":"Iminium catalysis in natural Diels–Alderase","authors":"Zuodong Sun, Xin Zang, Qingyang Zhou, Masao Ohashi, K. N. Houk, Jiahai Zhou, Yi Tang","doi":"10.1038/s41929-025-01294-w","DOIUrl":"10.1038/s41929-025-01294-w","url":null,"abstract":"Iminium-catalysed cycloaddition is one of the most prominent examples of organocatalysis, yet a biological counterpart has not been reported, despite the widespread occurrence of iminium adducts in enzymes. Here we present biochemical, structural and computational evidence for iminium catalysis by the natural Diels–Alderase SdnG, which catalyses norbornene formation in sordarin biosynthesis. A Schiff-base adduct between the ε-nitrogen of active site K127 and the aldehyde group of the enal dienophile is revealed by structural analysis and captured under catalytic conditions via borohydride reduction. This Schiff-base adduct positions the substrate into near-attack conformation and decreases the transition-state barrier of Diels–Alder cyclization by 8.3 kcal mol−1 via dienophile activation. A hydrogen-bond network consisting of a catalytic triad is proposed to facilitate the proton transfer required for iminium formation. This work establishes an intriguing mode of catalysis for Diels–Alderases and points the way to the design of iminium-based (bio)catalysts. Iminium-catalysed cycloaddition is a prominent example of organocatalytic reactivity, yet a biological counterpart has not been identified. Now, the authors report biochemical, structural and computational evidence for iminium catalysis by the natural Diels–Alderase SdnG.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 3","pages":"218-228"},"PeriodicalIF":42.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01294-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143192196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selectively monitoring the operando temperature of active metal nanoparticles during catalytic reactions by X-ray absorption nanothermometry 用x射线吸收纳米热法选择性地监测催化反应中活性金属纳米颗粒的操作温度
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-04 DOI: 10.1038/s41929-025-01295-9
Matthias Filez, Valentijn De Coster, Hilde Poelman, Valerie Briois, Anthony Beauvois, Jolien Dendooven, Maarten B. J. Roeffaers, Vladimir Galvita, Christophe Detavernier
{"title":"Selectively monitoring the operando temperature of active metal nanoparticles during catalytic reactions by X-ray absorption nanothermometry","authors":"Matthias Filez, Valentijn De Coster, Hilde Poelman, Valerie Briois, Anthony Beauvois, Jolien Dendooven, Maarten B. J. Roeffaers, Vladimir Galvita, Christophe Detavernier","doi":"10.1038/s41929-025-01295-9","DOIUrl":"10.1038/s41929-025-01295-9","url":null,"abstract":"Heat involved in catalytic reactions can influence the local temperature and performance of the active site, potentially causing catalyst degradation and runaway scenarios. Yet, broadly applicable thermometry methods to selectively probe the temperature of the catalytically active phase—where reactions take place—are generally lacking. Here we explore extended X-ray absorption fine-structure thermometry to monitor the operando temperature of active Ni nanoparticles, fully deconvoluted from their metal-oxide support. During dry reforming of methane, the reaction’s endothermicity causes Ni nanoparticles to become local heat sinks with their temperature deviating 90 °C from the reactor temperature. By thermometry at the single nanoparticle level, we chart the energy balance of nanoparticles and relate their temperature to reaction kinetics. Covering the full temperature range relevant to catalysis, this broadly applicable method enables temperature monitoring of individual catalyst components separately. Applying extended X-ray absorption fine-structure thermometry to existing datasets worldwide can generate enhanced understanding on reaction-induced temperature phenomena in heterogeneous catalysis. Monitoring the temperature of a catalyst’s active site during reactions can offer important insights into reactivity, but broadly applicable methods are lacking. Here the authors evaluate the potential of extended X-ray absorption fine-structure thermometry to observe variations in the temperature of nickel nanoparticles throughout representative gas–solid reactions.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"187-195"},"PeriodicalIF":42.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskite-driven solar C2 hydrocarbon synthesis from CO2 钙钛矿驱动的二氧化碳太阳能C2碳氢化合物合成
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-03 DOI: 10.1038/s41929-025-01292-y
Virgil Andrei, Inwhan Roh, Jia-An Lin, Joshua Lee, Yu Shan, Chung-Kuan Lin, Steve Shelton, Erwin Reisner, Peidong Yang
{"title":"Perovskite-driven solar C2 hydrocarbon synthesis from CO2","authors":"Virgil Andrei, Inwhan Roh, Jia-An Lin, Joshua Lee, Yu Shan, Chung-Kuan Lin, Steve Shelton, Erwin Reisner, Peidong Yang","doi":"10.1038/s41929-025-01292-y","DOIUrl":"10.1038/s41929-025-01292-y","url":null,"abstract":"Photoelectrochemistry (PEC) presents a direct pathway to solar fuel synthesis by integrating light absorption and catalysis into compact electrodes. Yet, PEC hydrocarbon production remains elusive due to high catalytic overpotentials and insufficient semiconductor photovoltage. Here we demonstrate ethane and ethylene synthesis by interfacing lead halide perovskite photoabsorbers with suitable copper nanoflower electrocatalysts. The resulting perovskite photocathodes attain a 9.8% Faradaic yield towards C2 hydrocarbon production at 0 V against the reversible hydrogen electrode. The catalyst and perovskite geometric surface areas strongly influence C2 photocathode selectivity, which indicates a role of local current density in product distribution. The thermodynamic limitations of water oxidation are overcome by coupling the photocathodes to Si nanowire photoanodes for glycerol oxidation. These unassisted perovskite–silicon PEC devices attain partial C2 hydrocarbon photocurrent densities of 155 µA cm−2, 200-fold higher than conventional perovskite–BiVO4 artificial leaves for water and CO2 splitting. These insights establish perovskite semiconductors as a versatile platform towards PEC multicarbon synthesis. Hydrocarbon selectivity in photoelectrochemical CO2 reduction has been limited due to a lack of low-overpotential catalysts and high-photovoltage semiconductors. Here Cu nanoflowers are interfaced with perovskite light absorbers for bias-free conversion of CO2 to ethane and ethylene coupled to water or glycerol oxidation.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"137-146"},"PeriodicalIF":42.8,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01292-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaching out 接触
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-29 DOI: 10.1038/s41929-025-01297-7
{"title":"Reaching out","authors":"","doi":"10.1038/s41929-025-01297-7","DOIUrl":"10.1038/s41929-025-01297-7","url":null,"abstract":"This Editorial provides a few highlights from the present issue of Nature Catalysis and reflects on some of the achievements from the editorial team in 2024.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"1-1"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01297-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymatic catalysis meets radical coupling 酶催化满足自由基偶联
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-29 DOI: 10.1038/s41929-025-01290-0
Chenyu Wang
{"title":"Enzymatic catalysis meets radical coupling","authors":"Chenyu Wang","doi":"10.1038/s41929-025-01290-0","DOIUrl":"10.1038/s41929-025-01290-0","url":null,"abstract":"","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"8-8"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信