Yu Wang, Marcell M. Bogner, Jake B. Bailey, Lauren N. Grant, Milan Gembicky, Paul F. Richardson, Phil S. Baran
{"title":"Cobalt-catalysed alkene hydronitration enabled by anomeric nitroamide","authors":"Yu Wang, Marcell M. Bogner, Jake B. Bailey, Lauren N. Grant, Milan Gembicky, Paul F. Richardson, Phil S. Baran","doi":"10.1038/s41929-025-01336-3","DOIUrl":null,"url":null,"abstract":"<p>Tertiary nitroalkanes, as well as their reduced products, α-tertiary amines, play an essential role in drug discovery as either key synthetic precursors or final motifs in targeted molecules. Existing methods to prepare tertiary nitro compounds generally rely on polar-bond disconnections, in which strong bases or highly active electrophiles are needed. Here we report the development of an anomeric nitroamide-based reagent that enables selective metal-hydride hydrogen atom transfer-based Co-catalysed alkene hydronitration for the preparation of valuable tertiary nitro compounds. This mild, scalable reaction shows broad functional group tolerance. Its synthetic application is demonstrated via late-stage nitration of complex alkenes derived from drugs and natural products, and simplifying the synthesis of a rare naturally occurring nitro sugar. Simple access to isotopically labelled <sup>15</sup>N-containing nitro compounds is also disclosed. The anomeric nitroamide reagent was deemed safe by energetic measurements and its reactivity rationalized based on X-ray crystallographic analysis.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"56 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-025-01336-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tertiary nitroalkanes, as well as their reduced products, α-tertiary amines, play an essential role in drug discovery as either key synthetic precursors or final motifs in targeted molecules. Existing methods to prepare tertiary nitro compounds generally rely on polar-bond disconnections, in which strong bases or highly active electrophiles are needed. Here we report the development of an anomeric nitroamide-based reagent that enables selective metal-hydride hydrogen atom transfer-based Co-catalysed alkene hydronitration for the preparation of valuable tertiary nitro compounds. This mild, scalable reaction shows broad functional group tolerance. Its synthetic application is demonstrated via late-stage nitration of complex alkenes derived from drugs and natural products, and simplifying the synthesis of a rare naturally occurring nitro sugar. Simple access to isotopically labelled 15N-containing nitro compounds is also disclosed. The anomeric nitroamide reagent was deemed safe by energetic measurements and its reactivity rationalized based on X-ray crystallographic analysis.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.