Nature Catalysis最新文献

筛选
英文 中文
[Fe]-hydrogenase intermediates revealed
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01274-6
Sven T. Stripp
{"title":"[Fe]-hydrogenase intermediates revealed","authors":"Sven T. Stripp","doi":"10.1038/s41929-024-01274-6","DOIUrl":"10.1038/s41929-024-01274-6","url":null,"abstract":"Understanding metalloenzymes can inspire the design of molecular catalysts. Employing signal-enhanced nuclear magnetic resonance spectroscopy on parahydrogen-reduced [Fe]-hydrogenase, two reaction intermediates have been characterized. This work paves the way toward a microscopic understanding of these metalloenzymes.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1264-1265"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoelectrochemical asymmetric catalysis
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01260-y
Chong Huang, Peng Xiong, Xiao-Li Lai, Hai-Chao Xu
{"title":"Photoelectrochemical asymmetric catalysis","authors":"Chong Huang, Peng Xiong, Xiao-Li Lai, Hai-Chao Xu","doi":"10.1038/s41929-024-01260-y","DOIUrl":"10.1038/s41929-024-01260-y","url":null,"abstract":"In the quest for more efficient and sustainable asymmetric catalytic methods, synthetic organic chemistry has relentlessly explored innovative techniques. This Comment highlights an emerging topic — photoelectrochemical asymmetric catalysis (PEAC) — which fuses molecular photoelectrocatalysis with asymmetric catalysis.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1250-1254"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One zeolite for multiple Fe species
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01272-8
Yulong Shan, Hong He
{"title":"One zeolite for multiple Fe species","authors":"Yulong Shan, Hong He","doi":"10.1038/s41929-024-01272-8","DOIUrl":"10.1038/s41929-024-01272-8","url":null,"abstract":"Elucidating the nature of the Fe active sites in Fe-zeolite catalysts and the reaction mechanism operating during the concurrent removal of NO and N2O is very challenging. Now, complementary transient operando spectroscopies are deployed to disentangle the structure and activity of diverse Fe species and elementary reaction steps.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1255-1256"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photobiocatalysis with non-haem iron enzymes for enantioselective radical transformations
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01263-9
{"title":"Photobiocatalysis with non-haem iron enzymes for enantioselective radical transformations","authors":"","doi":"10.1038/s41929-024-01263-9","DOIUrl":"10.1038/s41929-024-01263-9","url":null,"abstract":"Photoredox catalysis is merged with metalloenzymatic catalysis to enable asymmetric decarboxylative azidation and thiocyanation. These transformations are achieved by coupling the photoredox activation of N-hydroxyphthalimide esters using a synthetic photocatalyst with enantioselective radical capture by Fe(iii) intermediates of non-haem iron enzymes.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1266-1267"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The STRENDA Biocatalysis Guidelines for cataloguing metadata
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01261-x
Stephan Malzacher, Dominik Meißner, Jan Range, Zvjezdana Findrik Blažević, Katrin Rosenthal, John M. Woodley, Roland Wohlgemuth, Peter Wied, Bernd Nidetzky, Robert T. Giessmann, Kridsadakorn Prakinee, Pimchai Chaiyen, Andreas S. Bommarius, Johann M. Rohwer, Rodrigo O. M. A. de Souza, Peter J. Halling, Jürgen Pleiss, Carsten Kettner, Dörte Rother
{"title":"The STRENDA Biocatalysis Guidelines for cataloguing metadata","authors":"Stephan Malzacher, Dominik Meißner, Jan Range, Zvjezdana Findrik Blažević, Katrin Rosenthal, John M. Woodley, Roland Wohlgemuth, Peter Wied, Bernd Nidetzky, Robert T. Giessmann, Kridsadakorn Prakinee, Pimchai Chaiyen, Andreas S. Bommarius, Johann M. Rohwer, Rodrigo O. M. A. de Souza, Peter J. Halling, Jürgen Pleiss, Carsten Kettner, Dörte Rother","doi":"10.1038/s41929-024-01261-x","DOIUrl":"10.1038/s41929-024-01261-x","url":null,"abstract":"Biocatalysis needs improved reproducibility and quality of research reporting. Our interdisciplinary team has developed a flexible and extensible metadata catalogue based on STRENDA guidelines, essential for describing complex experimental setups in biocatalysis. The catalogue is available online via GitHub for community use.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1245-1249"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1,3-Butadiene formation through selective acetylene electrolysis on partially oxidized copper
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01255-9
{"title":"1,3-Butadiene formation through selective acetylene electrolysis on partially oxidized copper","authors":"","doi":"10.1038/s41929-024-01255-9","DOIUrl":"10.1038/s41929-024-01255-9","url":null,"abstract":"Conventional thermocatalytic routes to 1,3-butadiene are energy intensive. Now, a method for the selective electroreduction of acetylene to 1,3-butadiene under ambient conditions is demonstrated. Use of an iodide-containing electrolyte stabilizes partially oxidized copper sites on the catalyst, facilitating the synthesis of 1,3-butadiene with a Faradaic efficiency of up to 93%.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1268-1269"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating alkyl carbanions for organic synthesis
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01264-8
Sergio González-Granda, Corey R. J. Stephenson
{"title":"Generating alkyl carbanions for organic synthesis","authors":"Sergio González-Granda, Corey R. J. Stephenson","doi":"10.1038/s41929-024-01264-8","DOIUrl":"10.1038/s41929-024-01264-8","url":null,"abstract":"A catalytic, metal-free method for generating carbanion equivalents has been developed, providing a modern alternative to classical Grignard addition reactions. This approach overcomes the traditional drawbacks associated with the use of stoichiometric amounts of metalated reagents, aligning this strategy with contemporary sustainability requirements.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1257-1258"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkali metal cations act as homogeneous cocatalysts for the oxygen reduction reaction in aqueous electrolytes
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01241-1
Sang Gu Ji, Minho M. Kim, Man Ho Han, Junsic Cho, Yoosang Son, Young Yong Kim, Jaeyoung Jeong, Zee Hwan Kim, Keun Hwa Chae, Hyung-Suk Oh, Hyungjun Kim, Chang Hyuck Choi
{"title":"Alkali metal cations act as homogeneous cocatalysts for the oxygen reduction reaction in aqueous electrolytes","authors":"Sang Gu Ji, Minho M. Kim, Man Ho Han, Junsic Cho, Yoosang Son, Young Yong Kim, Jaeyoung Jeong, Zee Hwan Kim, Keun Hwa Chae, Hyung-Suk Oh, Hyungjun Kim, Chang Hyuck Choi","doi":"10.1038/s41929-024-01241-1","DOIUrl":"10.1038/s41929-024-01241-1","url":null,"abstract":"Alkali metal cations (AM+) exhibit high solubility and ionic conductivity, making them optimal components in aqueous electrolytes. Despite the conventional belief that AM+ are chemically inert spectators, the strong dependence of electrocatalysis on AM+ has recently provoked debates about their unforeseen catalytic role. However, conclusive evidence is still lacking. Here we demonstrate that AM+ can couple with reaction intermediates and determine kinetics as homogeneous cocatalysts in aqueous conditions, for the alkaline oxygen reduction reaction on a carbon catalyst. In situ X-ray absorption spectroscopy reveals a change in the electronic structure of Na+ from its hydrated state on a charged electrode. In situ Raman spectroscopy further identifies that this change is due to the formation of water-unstable NaO2 as a key intermediate in OOH− production. Together with theoretical calculations, this finding enunciates the counterintuitive cocatalytic role of AM+ in aqueous environments, highlighting the exigency of refined interface design principles for better electrocatalysis. Alkali cations in electrolytes are commonly considered chemically inert species, but their role has recently been called into question. Now, using in situ spectroscopy and molecular dynamics simulations, it is shown that alkali cations couple with intermediates in the oxygen reduction reaction, acting as cocatalysts.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1330-1338"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer-decorated bacteria for cascade catalysis
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01273-7
Andrea Belluati, Nico Bruns
{"title":"Polymer-decorated bacteria for cascade catalysis","authors":"Andrea Belluati, Nico Bruns","doi":"10.1038/s41929-024-01273-7","DOIUrl":"10.1038/s41929-024-01273-7","url":null,"abstract":"Polymer/whole-cell hybrid catalysts were created by synthesizing catalytically active polymers from the surface of Escherichia coli cells that recombinantly expressed enzymes. The surface-engineered bacteria allowed for orthogonal tandem catalysis, involving photo- or chemocatalytic steps by the polymers on the cells and biocatalytic steps by the enzymes within the cells.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1261-1263"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanotrophic catalysis for methane oxidation to formaldehyde
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-12-20 DOI: 10.1038/s41929-024-01252-y
{"title":"Methanotrophic catalysis for methane oxidation to formaldehyde","authors":"","doi":"10.1038/s41929-024-01252-y","DOIUrl":"10.1038/s41929-024-01252-y","url":null,"abstract":"Methane has been notoriously difficult to activate for useful chemistry. Now, a tandem catalyst system comprising an iron-modified zeolite and an enzyme is developed for the partial oxidation of methane to formaldehyde under ambient conditions using hydrogen peroxide as the oxidizing agent. This approach achieves high selectivity and conversion to formaldehyde.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1270-1271"},"PeriodicalIF":42.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信