Valentin Briega-Martos, Rafael Guzman-Soriano, Jiahong Jiang, Yao Yang
{"title":"塔菲尔斜坡的(错误)使用","authors":"Valentin Briega-Martos, Rafael Guzman-Soriano, Jiahong Jiang, Yao Yang","doi":"10.1038/s41929-025-01397-4","DOIUrl":null,"url":null,"abstract":"Tafel slope analysis, first proposed by Julius Tafel in 1905 and supported by the Butler–Volmer equation, is widely used to elucidate electrocatalytic mechanisms and evaluate kinetics. However, some misuses still frequently occur in the literature, calling for rigorous mechanistic investigations at single-crystal electrodes and under well defined mass-transport conditions.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 9","pages":"863-866"},"PeriodicalIF":44.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The (mis)uses of Tafel slope\",\"authors\":\"Valentin Briega-Martos, Rafael Guzman-Soriano, Jiahong Jiang, Yao Yang\",\"doi\":\"10.1038/s41929-025-01397-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tafel slope analysis, first proposed by Julius Tafel in 1905 and supported by the Butler–Volmer equation, is widely used to elucidate electrocatalytic mechanisms and evaluate kinetics. However, some misuses still frequently occur in the literature, calling for rigorous mechanistic investigations at single-crystal electrodes and under well defined mass-transport conditions.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"8 9\",\"pages\":\"863-866\"},\"PeriodicalIF\":44.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-025-01397-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-025-01397-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tafel slope analysis, first proposed by Julius Tafel in 1905 and supported by the Butler–Volmer equation, is widely used to elucidate electrocatalytic mechanisms and evaluate kinetics. However, some misuses still frequently occur in the literature, calling for rigorous mechanistic investigations at single-crystal electrodes and under well defined mass-transport conditions.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.