Nature CatalysisPub Date : 2024-10-03DOI: 10.1038/s41929-024-01230-4
Tianran Deng, Xiang-Lei Han, Yang Yu, Cheng Cheng, Xiangyuan Liu, Yuhong Gao, Keqiang Wu, Zhenghua Li, Jisheng Luo, Li Deng
{"title":"Organocatalytic asymmetric α-C–H functionalization of alkyl amines","authors":"Tianran Deng, Xiang-Lei Han, Yang Yu, Cheng Cheng, Xiangyuan Liu, Yuhong Gao, Keqiang Wu, Zhenghua Li, Jisheng Luo, Li Deng","doi":"10.1038/s41929-024-01230-4","DOIUrl":"10.1038/s41929-024-01230-4","url":null,"abstract":"Catalytic enantioselective α-C–H functionalization of widely available achiral alkyl amines could provide an ideal synthetic approach towards chiral amines. However, the inert nature of the α-C–H of alkyl amines renders their activation as carbanionic nucleophiles for catalytic asymmetric reactions an important yet unmet challenge. Here we describe how N-arylidene-protected alkyl amines could be activated as carbanions for asymmetric conjugate addition and the Mannich reaction. These results represent an intriguing and generally useful approach to the synthesis of chiral α,α-dialkyl amines. More importantly, they highlight the enormous potential of N-arylidene-protected amines as readily available and widely applicable synthons for the asymmetric synthesis of chiral amines. The catalytic activation of alkyl amines as α-nitrogen carbanions is challenging. Now the activation of N-arylidene-protected alkyl amines as carbanions by chiral ammonium organocatalysis for asymmetric conjugate addition and the Mannich reaction is reported, affording chiral α,α-dialkyl amines.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1076-1085"},"PeriodicalIF":42.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-10-03DOI: 10.1038/s41929-024-01240-2
Donato Decarolis, Monik Panchal, Matthew Quesne, Khaled Mohammed, Shaojun Xu, Mark Isaacs, Adam H. Clark, Luke L. Keenan, Takuo Wakisaka, Kohei Kusada, Hiroshi Kitagawa, C. Richard A. Catlow, Emma K. Gibson, Alexandre Goguet, Peter P. Wells
{"title":"Author Correction: Localized thermal levering events drive spontaneous kinetic oscillations during CO oxidation on Rh/Al2O3","authors":"Donato Decarolis, Monik Panchal, Matthew Quesne, Khaled Mohammed, Shaojun Xu, Mark Isaacs, Adam H. Clark, Luke L. Keenan, Takuo Wakisaka, Kohei Kusada, Hiroshi Kitagawa, C. Richard A. Catlow, Emma K. Gibson, Alexandre Goguet, Peter P. Wells","doi":"10.1038/s41929-024-01240-2","DOIUrl":"10.1038/s41929-024-01240-2","url":null,"abstract":"","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 11","pages":"1243-1243"},"PeriodicalIF":42.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-024-01240-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-10-01DOI: 10.1038/s41929-024-01233-1
Victoria A. Maola, Eric J. Yik, Mohammad Hajjar, Joy J. Lee, Manuel J. Holguin, Riley N. Quijano, Kalvin K. Nguyen, Katherine L. Ho, Jenny V. Medina, Nicholas Chim, John C. Chaput
{"title":"Directed evolution of a highly efficient TNA polymerase achieved by homologous recombination","authors":"Victoria A. Maola, Eric J. Yik, Mohammad Hajjar, Joy J. Lee, Manuel J. Holguin, Riley N. Quijano, Kalvin K. Nguyen, Katherine L. Ho, Jenny V. Medina, Nicholas Chim, John C. Chaput","doi":"10.1038/s41929-024-01233-1","DOIUrl":"10.1038/s41929-024-01233-1","url":null,"abstract":"Reprogramming DNA polymerases to synthesize xeno-nucleic acids (XNAs) is an important challenge that tests current enzyme engineering tools. Here we describe an evolutionary campaign aimed at generating an XNA polymerase that can efficiently make α-l-threofuranosyl nucleic acid (TNA)—an artificial genetic polymer that is recalcitrant to nucleases and resistant to acid-mediated degradation. Starting from a homologous recombination library, iterative cycles of selection were performed to traverse the fitness landscape in search of neutral mutations with increased evolutionary potential. Subsequent directed evolution of focused mutagenic libraries yielded 10–92, a newly engineered TNA polymerase that functions with a catalytic rate of ∼1 nt s−1 and >99% fidelity. A crystal structure of the closed ternary complex reveals the degree of structural change required to remodel the active site pocket for improved TNA synthesis activity. Together, these data demonstrate the importance of recombination as a strategy for evolving XNA polymerases with considerable practical value for biotechnology and medicine. The catalytic power of DNA polymerases for artificial genetic polymer (XNA) synthesis remains underdeveloped. Now, the evolution and structure of an α-l-threofuranosyl nucleic acid polymerase is described that achieves XNA synthesis with ∼1 nt s−1 and >99% template-copying fidelity.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 11","pages":"1173-1185"},"PeriodicalIF":42.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-09-30DOI: 10.1038/s41929-024-01232-2
Francesc Valls Mascaró, Marc T. M. Koper, Marcel J. Rost
{"title":"Step bunching instability and its effects in electrocatalysis on platinum surfaces","authors":"Francesc Valls Mascaró, Marc T. M. Koper, Marcel J. Rost","doi":"10.1038/s41929-024-01232-2","DOIUrl":"10.1038/s41929-024-01232-2","url":null,"abstract":"The atomic-scale surface structure plays a major role in the electrochemical behaviour of a catalyst. The electrocatalytic activity towards many relevant reactions, such as the oxygen reduction reaction on platinum, exhibits a linear dependency with the number of steps until this linear scaling breaks down at high step densities. Here we show, using Pt(111)-vicinal surfaces and in situ electrochemical scanning tunnelling microscopy, that this anomalous behaviour at high step densities has a structural origin and is attributed to the bunching of closely spaced steps. While Pt(554) presents parallel single steps and terrace widths that correspond to its nominal, expected value, most steps on Pt(553) are bunched. Our findings challenge the common assumption in electrochemistry that all stepped surfaces are composed of homogeneously spaced steps of monoatomic height and can successfully explain the anomalous trends documented in the literature linking step density to both activity and potential of zero total charge. The electrocatalytic activity of metal catalysts commonly exhibits a positive linear correlation with the presence of steps, but this dependency breaks down for Pt catalysts with high step densities. Now, using in situ electrochemical scanning tunnelling microscopy, it is shown that this is due to the bunching of closely spaced steps, forming double and triple steps.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 11","pages":"1165-1172"},"PeriodicalIF":42.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-09-24DOI: 10.1038/s41929-024-01222-4
Xiaofei Guan
{"title":"Without that crystalline touch","authors":"Xiaofei Guan","doi":"10.1038/s41929-024-01222-4","DOIUrl":"10.1038/s41929-024-01222-4","url":null,"abstract":"Traditional heterogeneous catalytic processes primarily hinge on the reactivity of solids. Now, a liquid metal catalyst based on a Cu–Ga binary system with dynamic structure and intriguing properties opens up an alternative for the conventional Haber–Bosch process for ammonia synthesis.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"961-962"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-09-24DOI: 10.1038/s41929-024-01224-2
Stefan Ringe
{"title":"Deciphering electrochemical methanol production","authors":"Stefan Ringe","doi":"10.1038/s41929-024-01224-2","DOIUrl":"10.1038/s41929-024-01224-2","url":null,"abstract":"Methanol selectivity is uncommon among CO2 reduction electrocatalysts. A notable exception is the cobalt phthalocyanine catalyst supported on carbon nanotubes, yet the mechanism is still poorly understood. Now, two studies use a variety of analytical approaches to investigate the mechanism of the process including the role of alkali cations.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"955-956"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-09-24DOI: 10.1038/s41929-024-01215-3
Jingchang Zhang, Magnus Rueping
{"title":"Metallaphotoredox catalysis for sp3 C–H functionalizations through single-electron transfer","authors":"Jingchang Zhang, Magnus Rueping","doi":"10.1038/s41929-024-01215-3","DOIUrl":"10.1038/s41929-024-01215-3","url":null,"abstract":"Metallaphotoredox catalysis merging photocatalysis and transition metal catalysis is now the most efficient platform for sp3 C–H functionalizations due to its very efficient activation and transformation capability. In such a process, photocatalysis is usually in charge of C–H bond activation to generate an sp3-hybridized carbon-centred radical, whereas transition metal catalysis is in charge of the subsequent transformation of this radical. Here we review advances in sp3 C–H functionalizations under matallaphotoredox catalysis via photocatalytic single-electron transfer mechanisms as opposed to hydrogen atom transfer processes. The delineation of these advancements is initially organized according to distinct sp3 C–H bonds and subsequently categorized by various transition metal catalytic systems. We encompass a thorough exploration of diverse metallaphotoredox catalysis strategies, along with their synthetic applications and mechanisms. Similarities and differences between these strategies are described to inspire new reaction designs, thus promoting further development of this field. The merger of photocatalysis and transition metal catalysis has broadened the scope of chemical reactivity in organic synthesis. This Review provides an overview of the use of metallaphotoredox catalysis for sp3 C–H functionalizations that occur via single-electron, rather than hydrogen atom transfer.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"963-976"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-09-24DOI: 10.1038/s41929-024-01223-3
Yuting Wang, Bin Zhang
{"title":"Solid electrolyte reactor for nitrate-to-ammonia","authors":"Yuting Wang, Bin Zhang","doi":"10.1038/s41929-024-01223-3","DOIUrl":"10.1038/s41929-024-01223-3","url":null,"abstract":"Electrochemical nitrate reduction to ammonia is a promising approach for waste conversion, yet the use of a concentrated supporting electrolyte creates a product separation issue. Now, a porous solid electrolyte reactor with a cation shielding effect is reported for nitrate wastewater treatment and the production of pure ammonia.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"959-960"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-09-24DOI: 10.1038/s41929-024-01217-1
Nikolay Kornienko
{"title":"Unlocking C–C cleavage in the electrochemical toolbox","authors":"Nikolay Kornienko","doi":"10.1038/s41929-024-01217-1","DOIUrl":"10.1038/s41929-024-01217-1","url":null,"abstract":"Electrifying the fragmentation of hydrocarbons is an emerging challenge in the context of decarbonizing the chemical industry. To this end, competing electrocatalytic C–C cleavage and oxidation pathways of butane were investigated.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"957-958"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature CatalysisPub Date : 2024-09-24DOI: 10.1038/s41929-024-01216-2
Jinhyeong Jang, Elena A. Rozhkova
{"title":"Carbon conversion on biophotonic leaf","authors":"Jinhyeong Jang, Elena A. Rozhkova","doi":"10.1038/s41929-024-01216-2","DOIUrl":"10.1038/s41929-024-01216-2","url":null,"abstract":"A photodiode can trigger bias-free redox reactions but is often hindered by thermodynamic barriers. Now, a bacteria-conjugated silicon biophotochemical diode allows simultaneous conversion of various carbon molecules with high efficacy.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"953-954"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}