近环境条件下用碳基催化剂将一氧化氮电化学氧化为浓硝酸

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL
Rong Xia, Sydnee Dronsfield, Ahryeon Lee, Bradie S. Crandall, Jiashun Liang, Bjorn Hasa, Andy Redder, Gang Wu, Tiago J. Goncalves, Samira Siahrostami, Feng Jiao
{"title":"近环境条件下用碳基催化剂将一氧化氮电化学氧化为浓硝酸","authors":"Rong Xia, Sydnee Dronsfield, Ahryeon Lee, Bradie S. Crandall, Jiashun Liang, Bjorn Hasa, Andy Redder, Gang Wu, Tiago J. Goncalves, Samira Siahrostami, Feng Jiao","doi":"10.1038/s41929-025-01315-8","DOIUrl":null,"url":null,"abstract":"<p>Nitric oxide (NO) emissions pose significant environmental challenges that demand sustainable remediation strategies. Here we report an electrochemical approach to convert NO into salt-free, concentrated nitric acid (HNO<sub>3</sub>) using a carbon-based catalyst at near-ambient conditions. The system achieves &gt;90% HNO<sub>3</sub> Faradaic efficiency (FE) at 100 mA cm<sup>−</sup><sup>2</sup> with pure NO and retains &gt;70% FE with dilute NO (0.5 vol%). Mechanistic studies identified nitrous acid as a critical intermediate, diverging from conventional thermocatalytic nitrogen dioxide pathways. By implementing a vapour-fed strategy in a membrane electrode assembly electrolyser, we directly synthesized 32 wt% HNO<sub>3</sub> from NO and deionized water, achieving 86% FE at 800 mA cm<sup>−</sup><sup>2</sup> without electrolyte additives or downstream purification. This work establishes an electrochemical route to valorize NO emissions to high-purity HNO<sub>3</sub>, advancing sustainable pollution mitigation and chemical manufacturing.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"21 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical oxidation of nitric oxide to concentrated nitric acid with carbon-based catalysts at near-ambient conditions\",\"authors\":\"Rong Xia, Sydnee Dronsfield, Ahryeon Lee, Bradie S. Crandall, Jiashun Liang, Bjorn Hasa, Andy Redder, Gang Wu, Tiago J. Goncalves, Samira Siahrostami, Feng Jiao\",\"doi\":\"10.1038/s41929-025-01315-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nitric oxide (NO) emissions pose significant environmental challenges that demand sustainable remediation strategies. Here we report an electrochemical approach to convert NO into salt-free, concentrated nitric acid (HNO<sub>3</sub>) using a carbon-based catalyst at near-ambient conditions. The system achieves &gt;90% HNO<sub>3</sub> Faradaic efficiency (FE) at 100 mA cm<sup>−</sup><sup>2</sup> with pure NO and retains &gt;70% FE with dilute NO (0.5 vol%). Mechanistic studies identified nitrous acid as a critical intermediate, diverging from conventional thermocatalytic nitrogen dioxide pathways. By implementing a vapour-fed strategy in a membrane electrode assembly electrolyser, we directly synthesized 32 wt% HNO<sub>3</sub> from NO and deionized water, achieving 86% FE at 800 mA cm<sup>−</sup><sup>2</sup> without electrolyte additives or downstream purification. This work establishes an electrochemical route to valorize NO emissions to high-purity HNO<sub>3</sub>, advancing sustainable pollution mitigation and chemical manufacturing.</p><figure></figure>\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41929-025-01315-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-025-01315-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

一氧化氮(NO)的排放构成了重大的环境挑战,需要可持续的补救策略。在这里,我们报告了一种在近环境条件下使用碳基催化剂将NO转化为无盐浓硝酸(HNO3)的电化学方法。该系统在100 mA cm−2条件下使用纯NO时达到90%的HNO3法拉第效率(FE),在稀释NO (0.5 vol%)条件下保持70%的FE。机理研究发现,亚硝酸是一个关键的中间体,不同于传统的热催化二氧化氮途径。通过在膜电极组件电解槽中实施蒸汽供气策略,我们直接从NO和去离子水中合成了32 wt%的HNO3,在800 mA cm - 2的条件下,无需电解质添加剂或下游净化,获得了86%的FE。本研究建立了一种电化学途径,将NO排放转化为高纯度的HNO3,促进可持续的污染缓解和化学制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrochemical oxidation of nitric oxide to concentrated nitric acid with carbon-based catalysts at near-ambient conditions

Electrochemical oxidation of nitric oxide to concentrated nitric acid with carbon-based catalysts at near-ambient conditions

Nitric oxide (NO) emissions pose significant environmental challenges that demand sustainable remediation strategies. Here we report an electrochemical approach to convert NO into salt-free, concentrated nitric acid (HNO3) using a carbon-based catalyst at near-ambient conditions. The system achieves >90% HNO3 Faradaic efficiency (FE) at 100 mA cm2 with pure NO and retains >70% FE with dilute NO (0.5 vol%). Mechanistic studies identified nitrous acid as a critical intermediate, diverging from conventional thermocatalytic nitrogen dioxide pathways. By implementing a vapour-fed strategy in a membrane electrode assembly electrolyser, we directly synthesized 32 wt% HNO3 from NO and deionized water, achieving 86% FE at 800 mA cm2 without electrolyte additives or downstream purification. This work establishes an electrochemical route to valorize NO emissions to high-purity HNO3, advancing sustainable pollution mitigation and chemical manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信