{"title":"从等温线到现代动力学","authors":"Dmitry Yu. Murzin","doi":"10.1038/s41929-025-01401-x","DOIUrl":null,"url":null,"abstract":"Adsorption on solid surfaces is extremely important for various phenomena and applications. In the 1910s, adsorption and subsequent catalysis was described mainly in terms of diffusion through a fluid film to the interface. Langmuir developed the concept of a monolayer adsorption, which became the cornerstone of modern surface science.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 9","pages":"861-862"},"PeriodicalIF":44.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From isotherms to modern kinetics\",\"authors\":\"Dmitry Yu. Murzin\",\"doi\":\"10.1038/s41929-025-01401-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adsorption on solid surfaces is extremely important for various phenomena and applications. In the 1910s, adsorption and subsequent catalysis was described mainly in terms of diffusion through a fluid film to the interface. Langmuir developed the concept of a monolayer adsorption, which became the cornerstone of modern surface science.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"8 9\",\"pages\":\"861-862\"},\"PeriodicalIF\":44.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-025-01401-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-025-01401-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Adsorption on solid surfaces is extremely important for various phenomena and applications. In the 1910s, adsorption and subsequent catalysis was described mainly in terms of diffusion through a fluid film to the interface. Langmuir developed the concept of a monolayer adsorption, which became the cornerstone of modern surface science.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.