M. Klingenhof, H. Trzesniowski, S. Koch, J. Zhu, Z. Zeng, L. Metzler, A. Klinger, M. Elshamy, F. Lehmann, P. W. Buchheister, A. Weisser, G. Schmid, S. Vierrath, F. Dionigi, P. Strasser
{"title":"High-performance anion-exchange membrane water electrolysers using NiX (X = Fe,Co,Mn) catalyst-coated membranes with redox-active Ni–O ligands","authors":"M. Klingenhof, H. Trzesniowski, S. Koch, J. Zhu, Z. Zeng, L. Metzler, A. Klinger, M. Elshamy, F. Lehmann, P. W. Buchheister, A. Weisser, G. Schmid, S. Vierrath, F. Dionigi, P. Strasser","doi":"10.1038/s41929-024-01238-w","DOIUrl":null,"url":null,"abstract":"<p>Recent efforts in anion-exchange membrane water electrolysis (AEMWE) focus on developing superior catalysts and membrane electrode assemblies to narrow the performance gaps compared with proton-exchange membrane water electrolysis (PEMWE). Here we present and characterize Ir-free AEMWE cells with NiX (X = Fe, Co or Mn) layered double hydroxide (LDH) catalyst-coated membranes with polarization characteristics and hydrogen productivities approaching those of acidic PEMWE cells, achieving >5 A cm<sup>−2</sup> at <2.2 V. Operando spectroscopy revealed a correlation between Ni<sup>4+</sup> centres and redox-active O ligands with an O K-edge feature, attributed to µ<sub>3</sub>-O ligands in the γ-LDH catalytic phase via density functional theory calculations. This computational–experimental study challenges the previously assumed correlation between spectral O K-edge features and oxygen evolution reaction performance in Ni-based LDH catalysts and provides insights from the molecular to the technological level demonstrating how redox-active Ni–O species and innovative catalyst-coated membrane preparation boost AEMWE performance to values rivalling state-of-the-art PEMWE cell technology.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01238-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent efforts in anion-exchange membrane water electrolysis (AEMWE) focus on developing superior catalysts and membrane electrode assemblies to narrow the performance gaps compared with proton-exchange membrane water electrolysis (PEMWE). Here we present and characterize Ir-free AEMWE cells with NiX (X = Fe, Co or Mn) layered double hydroxide (LDH) catalyst-coated membranes with polarization characteristics and hydrogen productivities approaching those of acidic PEMWE cells, achieving >5 A cm−2 at <2.2 V. Operando spectroscopy revealed a correlation between Ni4+ centres and redox-active O ligands with an O K-edge feature, attributed to µ3-O ligands in the γ-LDH catalytic phase via density functional theory calculations. This computational–experimental study challenges the previously assumed correlation between spectral O K-edge features and oxygen evolution reaction performance in Ni-based LDH catalysts and provides insights from the molecular to the technological level demonstrating how redox-active Ni–O species and innovative catalyst-coated membrane preparation boost AEMWE performance to values rivalling state-of-the-art PEMWE cell technology.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.