Molecular and Cellular Biochemistry最新文献

筛选
英文 中文
Omics research in atherosclerosis. 动脉粥样硬化中的 Omics 研究。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-24 DOI: 10.1007/s11010-024-05139-1
Kai-Jiang Tian, Yu Yang, Guo-Shuai Chen, Nian-Hua Deng, Zhen Tian, Rui Bai, Fan Zhang, Zhi-Sheng Jiang
{"title":"Omics research in atherosclerosis.","authors":"Kai-Jiang Tian, Yu Yang, Guo-Shuai Chen, Nian-Hua Deng, Zhen Tian, Rui Bai, Fan Zhang, Zhi-Sheng Jiang","doi":"10.1007/s11010-024-05139-1","DOIUrl":"https://doi.org/10.1007/s11010-024-05139-1","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid deposition within the arterial intima, as well as fibrous tissue proliferation and calcification. AS has long been recognized as one of the primary pathological foundations of cardiovascular diseases in humans. Its pathogenesis is intricate and not yet fully elucidated. Studies have shown that AS is associated with oxidative stress, inflammatory response, lipid deposition, and changes in cell phenotype. Unfortunately, there is currently no effective prevention or targeted treatment for AS. The rapid advancement of omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, has opened up novel avenues to elucidate the fundamental pathophysiology and associated mechanisms of AS. Here, we review articles published over the past decade and focus on the current status, challenges, limitations, and prospects of omics in AS research and clinical practice. Emphasizing potential targets based on omics technologies will improve our understanding of this pathological condition and assist in the development of potential therapeutic approaches for AS-related diseases.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NBS1 dePARylation by NUDT16 is critical for DNA double-strand break repair. NUDT16 对 NBS1 的脱 PARyl 化对 DNA 双链断裂修复至关重要。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-23 DOI: 10.1007/s11010-024-05140-8
Zhen Zhang, William E Samsa, Zihua Gong
{"title":"NBS1 dePARylation by NUDT16 is critical for DNA double-strand break repair.","authors":"Zhen Zhang, William E Samsa, Zihua Gong","doi":"10.1007/s11010-024-05140-8","DOIUrl":"https://doi.org/10.1007/s11010-024-05140-8","url":null,"abstract":"<p><p>NBS1, a protein linked to the autosomal recessive disorder Nijmegen breakage syndrome, plays an essential role in the DNA damage response and DNA repair. Despite its importance, the mechanisms regulating NBS1 and the impact of this regulation on DNA repair processes remain obscure. In this study, we discovered a new post-translational modification of NBS1, ADP-ribosylation. This modification can be removed by the NUDT16 hydrolase. The loss of NUDT16 results in a reduction of NBS1 protein levels due to NBS1 PARylation-dependent ubiquitination and degradation, which is mediated by the PAR-binding E3 ubiquitin ligase, RNF146. Importantly, ADP-ribosylation of NBS1 is crucial for its localization at DSBs and its involvement in homologous recombination (HR) repair. Additionally, the NUDT16-NBS1 interaction is regulated in response to DNA damage, providing further rationale for NBS1 regulation by NUDT16 hydrolase. In summary, our study unveils the critical role of NUDT16 in governing both the stability of NBS1 and recruitment of NBS1 to DNA double-strand breaks, providing novel insights into the regulation of NBS1 in the HR repair pathway.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miRNA biomarkers to predict risk of primary non-function of fatty allografts and drug induced acute liver failures. 预测脂肪异体移植和药物诱发急性肝衰竭原发性无功能风险的 miRNA 生物标志物。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-18 DOI: 10.1007/s11010-024-05129-3
Juliette Schönberg, Jürgen Borlak
{"title":"miRNA biomarkers to predict risk of primary non-function of fatty allografts and drug induced acute liver failures.","authors":"Juliette Schönberg, Jürgen Borlak","doi":"10.1007/s11010-024-05129-3","DOIUrl":"https://doi.org/10.1007/s11010-024-05129-3","url":null,"abstract":"<p><p>Primary non-function (PNF) of an allograft defines an irreversible graft failure and although rare, constitutes a life-threatening condition that requires high-urgency re-transplantation. Equally, drug induced acute liver failures (ALF) are seldom but the rapid loss of hepatic function may require orthotropic liver transplantation (OLT). Recently, we reported the development of a rodent PNF-disease model of fatty allografts and showed that a dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of PNF. Based on findings from the rat PNF-disease model, we selected 15 miRNA-biomarker candidates for clinical validation and performed RT-qPCRs in well-documented PNF cases following OLT of fatty allografts. To assess specificity and selectivity, we compared their regulation in pre- and intraoperative liver biopsies and pre- and post-operative blood samples of patients undergoing elective hepatobiliary surgery. Additionally, we assessed their regulation in drug induced ALF. We confirmed clinical relevance for 11 PNF-associated miRNAs and found expression of miRNA-27b-3p, miRNA-122-3p, miRNA-125a-5p, miRNA-125b-5p and miRNA-192-5p to correlate with the hepatic steatosis grades. Furthermore, we demonstrate selectivity and specificity for the biomarker candidates with opposite regulation of let-7b-5p, miRNA-122-5p, miRNA-125b-5p and miRNA-194-5p in blood samples of patients following successful OLTs and/or liver resection. Moreover, by considering findings from 21 independent ALF-studies, we observed nine PNF-associated miRNAs regulated in common. We report miRNAs highly regulated in PNF and ALF, and their common regulation in different diseases broadens the perspective as biomarker candidates. Our study warrants independent confirmation in randomized clinical trials.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroRNA signatures in osteosarcoma: diagnostic insights and therapeutic prospects. 骨肉瘤中的微RNA特征:诊断见解和治疗前景。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-17 DOI: 10.1007/s11010-024-05135-5
Mritunjoy Dey, Palina Skipar, Ewa Bartnik, Jakub Piątkowski, Dorota Sulejczak, Anna M Czarnecka
{"title":"MicroRNA signatures in osteosarcoma: diagnostic insights and therapeutic prospects.","authors":"Mritunjoy Dey, Palina Skipar, Ewa Bartnik, Jakub Piątkowski, Dorota Sulejczak, Anna M Czarnecka","doi":"10.1007/s11010-024-05135-5","DOIUrl":"https://doi.org/10.1007/s11010-024-05135-5","url":null,"abstract":"<p><p>Osteosarcoma (OSa) is the most prevalent primary malignant bone tumor in children and adolescents, characterized by complex genetic and epigenetic alterations. Traditional treatments face significant challenges due to high rates of drug resistance and lack of targeted therapies. Recent advances in microRNA (miRNA) research have opened new avenues for understanding and treating osteosarcoma. This review explores the many critical functions of miRNAs in osteosarcoma, particularly their potential for clinical use. The review highlights two key areas where miRNAs could be beneficial. Firstly, miRNAs can act as biomarkers for diagnosing osteosarcoma and predicting patient prognosis. Secondly, specific miRNAs can regulate cellular processes like proliferation, cell death, migration, and even resistance to chemotherapy drugs in osteosarcoma. This ability to target multiple pathways within cancer cells makes miRNA-based therapies highly promising. Additionally, though the interaction between miRNAs and circular RNAs (circRNAs) falls outside the scope of the paper, it has also been discussed briefly. While miRNA-based therapies offer exciting possibilities for targeting multiple pathways in osteosarcoma, challenges remain. Efficient delivery, potential off-target effects, tumor complexity, and rigorous testing are hurdles to overcome before these therapies can reach patients. Despite these challenges, continued research and collaboration among scientists, clinicians, and regulatory bodies hold the promise of overcoming them. This collaborative effort can pave the way for the development of safe and effective miRNA-based treatments for osteosarcoma.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causes and consequences of DNA double-stranded breaks in cardiovascular disease. 心血管疾病中 DNA 双链断裂的原因和后果。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-15 DOI: 10.1007/s11010-024-05131-9
A J Marian
{"title":"Causes and consequences of DNA double-stranded breaks in cardiovascular disease.","authors":"A J Marian","doi":"10.1007/s11010-024-05131-9","DOIUrl":"https://doi.org/10.1007/s11010-024-05131-9","url":null,"abstract":"<p><p>The genome, whose stability is essential for survival, is incessantly exposed to internal and external stressors, which introduce an estimated 10<sup>4</sup> to 10<sup>5</sup> lesions, such as oxidation, in the nuclear genome of each mammalian cell each day. A delicate homeostatic balance between the generation and repair of DNA lesions maintains genomic stability. To initiate transcription, DNA strands unwind to form a transcription bubble and provide a template for the RNA polymerase II (RNAPII) complex to synthesize nascent RNA. The process generates DNA supercoils and introduces torsional stress. To enable RNAPII processing, the supercoils are released by topoisomerases by introducing strand breaks, including double-stranded breaks (DSBs). Thus, DSBs are intrinsic genomic features of gene expression. The breaks are quickly repaired upon processing of the transcription. DNA lesions and damaged proteins involved in transcription could impede the integrity and efficiency of RNAPII processing. The impediment, which is referred to as transcription stress, not only could lead to the generation of aberrant RNA species but also the accumulation of DSBs. The latter is particularly the case when topoisomerase processing and/or the repair mechanisms are compromised. The DSBs activate the DNA damage response (DDR) pathways to repair the damaged DNA and/or impose cell cycle arrest and cell death. In addition, the release of DSBs into the cytosol activates the cytosolic DNA-sensing proteins (CDSPs), which along with the nuclear DDR pathways induce the expression of senescence-associated secretory phenotype (SASP), cell cycle arrest, senescence, cell death, inflammation, and aging. The primary stimulus in hereditary cardiomyopathies is a mutation(s) in genes encoding the protein constituents of cardiac myocytes; however, the phenotype is the consequence of intertwined complex interactions among numerous stressors and the causal mutation(s). Increased internal DNA stressors, such as oxidation, alkylation, and cross-linking, are expected to be common in pathological conditions, including in hereditary cardiomyopathies. In addition, dysregulation of gene expression also imposes transcriptional stress and collectively with other stressors provokes the generation of DSBs. In addition, the depletion of nicotinamide adenine dinucleotide (NAD), which occurs in pathological conditions, impairs the repair mechanism and further facilitates the accumulation of DSBs. Because DSBs activate the DDR pathways, they are expected to contribute to the pathogenesis of cardiomyopathies. Thus, interventions to reduce the generation of DSBs, enhance their repair, and block the deleterious DDR pathways would be expected to impart salubrious effects not only in pathological states, as in hereditary cardiomyopathies but also aging.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting RAGE-signaling pathways in the repair of rotator-cuff injury. 在肩袖损伤修复中靶向 RAGE 信号通路。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-12 DOI: 10.1007/s11010-024-05132-8
Vikrant Rai, Vinitha Deepu, Devendra K Agrawal
{"title":"Targeting RAGE-signaling pathways in the repair of rotator-cuff injury.","authors":"Vikrant Rai, Vinitha Deepu, Devendra K Agrawal","doi":"10.1007/s11010-024-05132-8","DOIUrl":"https://doi.org/10.1007/s11010-024-05132-8","url":null,"abstract":"<p><p>Rotator cuff injury (RCI) is a common musculoskeletal problem that can have a significant impact on the quality of life and functional abilities of those affected. Novel therapies, including proteomics-based, stem cells, platelet-rich plasma, and exosomes, are being developed to promote rotator-cuff healing. The receptor for advanced glycation end-products (RAGE) is a multifunctional receptor that is expressed on several cell types and is implicated in several physiologic and pathological processes, such as tissue repair, inflammation, and degeneration. Because of its capacity to bind with a variety of ligands and initiate signaling pathways that lead to inflammatory responses in RCI, RAGE plays a crucial role in inflammation. In this critical review article, we discussed the role of RAGE-mediated persistent inflammation in RCI followed by novel factors including PKCs, TIRAP, DIAPH1, and factors related to muscle injury with their therapeutic potential in RCI. These factors involve various aspects of muscle injury and signaling and the possibility of targeting these factors to improve the clinical outcomes in RCI still needs further investigation.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-OAcGD2 antibody in combination with ceramide kinase inhibitor mediates potent antitumor cytotoxicity against breast cancer and diffuse intrinsic pontine glioma cells. 抗 OAcGD2 抗体与神经酰胺激酶抑制剂联合使用可对乳腺癌和弥漫性内生性桥脑胶质瘤细胞产生强大的抗肿瘤细胞毒性。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-12 DOI: 10.1007/s11010-024-05127-5
Angelina Kasprowicz, Sumeyye Cavdarli, Philippe Delannoy, Xavier Le Guezennec, Clémence Defebvre, Corentin Spriet, Nicolas Jonckheere, Jean-Marc Le Doussal, Marie-Ange Krzewinski-Recchi, Suman Mitra, Samuel Meignan, Sophie Groux-Degroote
{"title":"Anti-OAcGD2 antibody in combination with ceramide kinase inhibitor mediates potent antitumor cytotoxicity against breast cancer and diffuse intrinsic pontine glioma cells.","authors":"Angelina Kasprowicz, Sumeyye Cavdarli, Philippe Delannoy, Xavier Le Guezennec, Clémence Defebvre, Corentin Spriet, Nicolas Jonckheere, Jean-Marc Le Doussal, Marie-Ange Krzewinski-Recchi, Suman Mitra, Samuel Meignan, Sophie Groux-Degroote","doi":"10.1007/s11010-024-05127-5","DOIUrl":"https://doi.org/10.1007/s11010-024-05127-5","url":null,"abstract":"<p><p>O-acetylated GD2 (OAcGD2) is a cancer-related antigen that is currently being explored for therapeutic use. Exploring the intricate mechanisms behind OAcGD2 synthesis in cancer cells has long been a challenge. Leveraging state-of-the-art high-throughput RNAi screening and confocal imaging technologies, our study delves into the genetic network orchestrating OAcGD2 synthesis in breast cancer cells. By conducting a comprehensive siRNA screen targeting the OAcGD2 phosphatome/kinome, we identified 43 genetic modulators, with 25 downregulating and 18 upregulating OAcGD2 synthesis. Among these, our study focused on CERK, the gene-encoding ceramide kinase, a pivotal player in glycosphingolipid metabolism. Through meticulous experimentation utilizing anti-CERK inhibitor and siRNAs, we made a significant discovery: CERK inhibition robustly upregulates OAcGD2 in both neuroblastoma and breast cancer cells, concurrently dampening cell migration. Furthermore, our findings highlight an exciting prospect: augmenting the antibody-dependent cell cytotoxicity of the chimeric human/mouse anti-OAcGD2 IgG1 monoclonal antibody (c8B6 mAb) against breast cancer and diffuse intrinsic pontine glioma cell lines in combination with specific CERK inhibitors. These results underscore the pivotal role of CERK inhibition in bolstering OAcGD2 synthesis, thus, presenting a promising strategy to increase the efficacy of anti-OAcGD2-based immunotherapy in patients with neuroectodermal tumors. By shedding light on this intricate interplay, our study paves the way for innovative therapeutic strategies poised to revolutionize the treatment landscape for these aggressive malignancies.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance physical exercise modulates metabolic adipokines, decreases body weight, and improves glomerular filtration in patients with chronic kidney disease in hemodialysis. 阻力运动可调节血液透析慢性肾病患者的代谢脂肪因子,减轻体重,改善肾小球滤过功能。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-11 DOI: 10.1007/s11010-024-05128-4
Francini Franscescon, Matheus Chimelo Bianchini, Enzo Gheller, Claudio Eliezer Pomianowsky, Josiano Guilherme Puhle, Lucas Zannini Medeiros Lima, Matheus Ribeiro Bizuti, Filomena Marafon, Fabiana Brum Haag, Débora Tavares de Resende E Silva
{"title":"Resistance physical exercise modulates metabolic adipokines, decreases body weight, and improves glomerular filtration in patients with chronic kidney disease in hemodialysis.","authors":"Francini Franscescon, Matheus Chimelo Bianchini, Enzo Gheller, Claudio Eliezer Pomianowsky, Josiano Guilherme Puhle, Lucas Zannini Medeiros Lima, Matheus Ribeiro Bizuti, Filomena Marafon, Fabiana Brum Haag, Débora Tavares de Resende E Silva","doi":"10.1007/s11010-024-05128-4","DOIUrl":"https://doi.org/10.1007/s11010-024-05128-4","url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is a condition characterized by abnormalities in kidney structure and function that persist for more than 3 months. It is estimated that more than 800 million people in the world have a diagnosis of CKD. To remove the harmful metabolic substances from the body, people with CKD need to perform hemodialysis. Due to their beneficial effects against a wide range of clinical conditions, physical exercise is considered a non-pharmacological therapy. This study aimed to evaluate the beneficial effects of resistance exercise during hemodialysis on metabolic adipokines, myokines, body weight, and glomerular filtration rate in patients living with CKD. Briefly, the blood samples were collected in two moments: immediately before the start of the resistance exercise protocol and 1 week after the end of the protocol. Resistance exercise protocol was performed thrice a week for 12 weeks and applied during hemodialysis sessions. Here, resistance exercise increases the circulating irisin (14.56%; p = 0.0112), handgrip strength (5.70%; p = 0.0036), glomerular filtration rate (25.9%; p = 0.022) and significantly decreases adiponectin (- 55.7%; p = 0.0044), body weight (- 3.7%; p = 0.0001), glucose (- 22%; p = 0.009), and albumin levels (- 9.55%; p = 0.0001). Conversely, leptin levels (- 10.9%; p = 0.38), iron (3.05%; p = 0.705), ferritin (3.24%; p = 0.880), hemoglobin (- 0.52%; p = 0.75), total cholesterol (7.9%; p = 0.19), LDL (- 9.99%; p = 0.15) and HDL (- 4.8%; p = 0.45), did not change after resistance exercise. Interestingly, 1,25 hydroxyvitamin D levels were significantly increased (14.5%; p = 0.01) following resistance exercise. Considering the effect of sex (males vs. females), we found that irisin levels increased in females but not in males after the resistance exercise protocol. Furthermore, handgrip strength and body weight were different, indicating that males had the highest strength and weight. We demonstrated that both males and females had lower albumin levels after the resistance exercise protocol. In conclusion, we suggest that resistance exercise has beneficial effects in the CKD population by modulating adipokines and metabolic myokines and therefore can be used as a non-pharmacological adjunctive therapy in CKD patients undergoing HD.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of four-week lasting aerobic treadmill training on hepatic injury biomarkers, oxidative stress parameters, metabolic enzymes activities and histological characteristics in liver tissue of hyperhomocysteinemic rats. 持续四周的有氧跑步训练对高同型半胱氨酸血症大鼠肝损伤生物标志物、氧化应激参数、代谢酶活性和肝组织学特征的影响
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-10 DOI: 10.1007/s11010-024-05133-7
Dušan Todorović, Marija Stojanović, Slavica Mutavdžin Krneta, Jovana Jakovljević Uzelac, Kristina Gopčević, Ana Medić, Milica Labudović Borović, Sanja Stanković, Dragan M Djuric
{"title":"Effects of four-week lasting aerobic treadmill training on hepatic injury biomarkers, oxidative stress parameters, metabolic enzymes activities and histological characteristics in liver tissue of hyperhomocysteinemic rats.","authors":"Dušan Todorović, Marija Stojanović, Slavica Mutavdžin Krneta, Jovana Jakovljević Uzelac, Kristina Gopčević, Ana Medić, Milica Labudović Borović, Sanja Stanković, Dragan M Djuric","doi":"10.1007/s11010-024-05133-7","DOIUrl":"https://doi.org/10.1007/s11010-024-05133-7","url":null,"abstract":"<p><p>Disruptions in homocysteine (Hcy) metabolism may increase the liver's susceptibility to developing conditions such as alcoholic liver disease, viral hepatitis, hepatocellular carcinoma (HCC), and cirrhosis. The aim of this study was to examine effects of aerobic treadmill training on hepatic injury biomarkers in sera, oxidative stress parameters, the activity of metabolic enzymes, and histological characteristics in the liver tissue of rats with experimentally induced hyperhomocysteinemia. Male Wistar albino rats were divided into four groups (N = 10, per group): C-saline 0.2 mL/day sc. 2×/day for 14 days + saline 0.5 mL ip.1×/day for 28 days; H-homocysteine 0.45 µmol/g b.w. 2×/day for 14 days + saline 0.5 mL ip.1×/day for 28 days; CPA-saline 0.2 mL/day sc. 2×/day for 14 days + aerobic treadmill training for 28 days; and HPA-homocysteine 0.45 µmol/g b.w. 2×/day for 14 days + aerobic treadmill training for 28 days. The serum albumin concentration was decreased in both physically active (PA) groups compared to sedentary groups. Concentration of malondialdehyde in liver tissue homogenates was lower in both PA groups compared to the H group. The total lactate dehydrogenase and malate dehydrogenase activities were significantly elevated in the HPA group compared to the C and H groups. Activities of aminotransferases in sera samples, and activities of catalase and superoxide dismutase in liver tissue did not significantly differ between groups. No significant histological changes were found in liver tissue in groups. This study demonstrated that aerobic treadmill training can reduce lipid peroxidation in liver tissue under hyperhomocysteinemic conditions, providing a protective effect. However, hyperhomocysteinemia can alter energy metabolism during aerobic exercise, shifting it toward anaerobic pathways and leading to elevated lactate dehydrogenase activity in the liver. Given that conditions like hyperhomocysteinemia are associated with an increased risk of cardiovascular diseases and liver damage, understanding how exercise influences these dynamics could guide therapeutic approaches.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon monoxide-releasing molecule-3 ameliorates traumatic brain injury-induced cardiac dysfunctions via inhibition of pyroptosis and apoptosis. 一氧化碳释放分子-3可通过抑制热凋亡和细胞凋亡改善创伤性脑损伤引起的心脏功能障碍。
IF 3.5 2区 生物学
Molecular and Cellular Biochemistry Pub Date : 2024-10-08 DOI: 10.1007/s11010-024-05130-w
Jing Bai, Wen-Bo Sun, Wei-Chao Zheng, Xu-Peng Wang, Yang Bai
{"title":"Carbon monoxide-releasing molecule-3 ameliorates traumatic brain injury-induced cardiac dysfunctions via inhibition of pyroptosis and apoptosis.","authors":"Jing Bai, Wen-Bo Sun, Wei-Chao Zheng, Xu-Peng Wang, Yang Bai","doi":"10.1007/s11010-024-05130-w","DOIUrl":"https://doi.org/10.1007/s11010-024-05130-w","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) frequently results in cardiac dysfunction and impacts the quality of survivors' life. It has been reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorated the HSR‑induced cardiac dysfunctions. The purpose of this study was to determine whether the application of CORM-3 on TBI exerted therapeutic effects against TBI-induced cardiac dysfunctions. Rats were randomly divided into four groups (n = 12) including Sham, TBI, TBI/CORM-3 and TBI/inactive CORM-3 (iCORM-3) groups. TBI was established by a weight-drop model. The rats in the TBI/CORM-3 group and TBI/iCORM-3 group were intravenously injected with CORM-3 and iCORM-3 (4 mg/kg) following TBI, respectively. The time of death in the rats that did not survive within 24 h was recorded. 24 h post-trauma, the cardiac function, pathological change, serum troponin T and creatine kinase-MB (CK-MB) levels, pyroptosis, apoptosis and expressions of TUNEL staining, Gasdermin D (GSDMD), IL-1β, IL-18, ratio Bax/Bcl-2 were assessed by echocardiography, hematoxylin-eosin staining, chemiluminescence, immunofluorescence, and western blot assays, respectively. TBI-treated rats exhibited dramatically decreased ejection fraction and aggravated myocardial injury, increased mortality rate, elevated levels of serum troponin T and CK-MB, promoted cardiac pyroptosis and apoptosis, and upregulated expressions of cleaved caspase-3, GSDMD N-terminal fragments, IL-1β, IL-18, and ratio of Bax/Bcl-2, whereas CORM-3 partially reversed these changes. CORM-3 ameliorated TBI-induced cardiac injury and dysfunction. This mechanism may be responsible for the inhibition of pyroptosis and apoptosis in cardiomyocyte.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信