{"title":"Glycosylation in cancer: mechanisms, diagnostic markers, and therapeutic applications.","authors":"Zahraa Qusairy, Miran Rada","doi":"10.1007/s11010-025-05303-1","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylation, a key post-translational modification, plays a pivotal role in cancer progression by influencing critical processes such as protein folding, immune modulation, and intercellular signaling. Altered glycosylation patterns are increasingly recognized as fundamental drivers of tumorigenesis, contributing to key cancer hallmarks like enhanced tumor migration, metastasis, and immune evasion. These aberrant glycosylation signatures not only offer insights into cancer biology but also serve as valuable diagnostic markers and potential therapeutic targets across a range of malignancies. This review explores the mechanisms underlying glycosylation alterations in cancer. We discuss the molecular basis of these changes, including genetic mutations, epigenetic regulation, and oncogene-driven shifts in glycosylation pathways. Additionally, we highlight recent advancements in glycomics research, with a focus on how these alterations influence tumor progression, angiogenesis, and the tumor microenvironment. Furthermore, the review considers the clinical implications of glycosylation changes, including their role in resistance to anti-cancer therapies and their potential as biomarkers for personalized treatment strategies. By bridging fundamental glycosylation research with clinical applications, this review underscores the promise of glycosylation as both a diagnostic tool and a therapeutic target in oncology, offering new avenues for improved patient stratification and precision medicine.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"4941-4959"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05303-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glycosylation, a key post-translational modification, plays a pivotal role in cancer progression by influencing critical processes such as protein folding, immune modulation, and intercellular signaling. Altered glycosylation patterns are increasingly recognized as fundamental drivers of tumorigenesis, contributing to key cancer hallmarks like enhanced tumor migration, metastasis, and immune evasion. These aberrant glycosylation signatures not only offer insights into cancer biology but also serve as valuable diagnostic markers and potential therapeutic targets across a range of malignancies. This review explores the mechanisms underlying glycosylation alterations in cancer. We discuss the molecular basis of these changes, including genetic mutations, epigenetic regulation, and oncogene-driven shifts in glycosylation pathways. Additionally, we highlight recent advancements in glycomics research, with a focus on how these alterations influence tumor progression, angiogenesis, and the tumor microenvironment. Furthermore, the review considers the clinical implications of glycosylation changes, including their role in resistance to anti-cancer therapies and their potential as biomarkers for personalized treatment strategies. By bridging fundamental glycosylation research with clinical applications, this review underscores the promise of glycosylation as both a diagnostic tool and a therapeutic target in oncology, offering new avenues for improved patient stratification and precision medicine.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.