Lihong Hu, Jiejie Hu, Chengdong Qin, Siyuan Liu, Yang Yu
{"title":"TNBC中的铁下垂:与肿瘤浸润免疫细胞的相互作用及其治疗意义。","authors":"Lihong Hu, Jiejie Hu, Chengdong Qin, Siyuan Liu, Yang Yu","doi":"10.1007/s11010-025-05305-z","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options and a poor prognosis. Immunotherapy has emerged as a promising approach for TNBC, with tumor-infiltrating immune cells (TICs) in the tumor microenvironment (TME) serving as a critical cellular basis for its efficacy. However, the success of immunotherapy in TNBC is often limited due to the immunosuppressive nature of the TME and the heterogeneity of TNBC. Ferroptosis, a form of iron-dependent programmed cell death regulated by metabolic networks including iron, glutathione (GSH), and lipid metabolism, has shown potential to enhance anti-tumor immunity. Recent studies have demonstrated that ferroptosis can modulate immune responses by promoting the infiltration and activation of TICs, thereby improving the outcomes of immunotherapy. However, ferroptosis in immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) can trigger an \"immunosuppressive wave,\" affecting other immune cells in the tumor immune microenvironment. This demonstrates the dual role of ferroptosis in TNBC therapy, emphasizing the need for a nuanced understanding of its effects on different immune cells and tumor cells. Herein, we further elaborate the role of ferroptosis in TNBC cells and its interactions with tumor-infiltrating immune cells (TICs) within the TME.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"5029-5039"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476321/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ferroptosis in TNBC: interplay with tumor-infiltrating immune cells and therapeutic implications.\",\"authors\":\"Lihong Hu, Jiejie Hu, Chengdong Qin, Siyuan Liu, Yang Yu\",\"doi\":\"10.1007/s11010-025-05305-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options and a poor prognosis. Immunotherapy has emerged as a promising approach for TNBC, with tumor-infiltrating immune cells (TICs) in the tumor microenvironment (TME) serving as a critical cellular basis for its efficacy. However, the success of immunotherapy in TNBC is often limited due to the immunosuppressive nature of the TME and the heterogeneity of TNBC. Ferroptosis, a form of iron-dependent programmed cell death regulated by metabolic networks including iron, glutathione (GSH), and lipid metabolism, has shown potential to enhance anti-tumor immunity. Recent studies have demonstrated that ferroptosis can modulate immune responses by promoting the infiltration and activation of TICs, thereby improving the outcomes of immunotherapy. However, ferroptosis in immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) can trigger an \\\"immunosuppressive wave,\\\" affecting other immune cells in the tumor immune microenvironment. This demonstrates the dual role of ferroptosis in TNBC therapy, emphasizing the need for a nuanced understanding of its effects on different immune cells and tumor cells. Herein, we further elaborate the role of ferroptosis in TNBC cells and its interactions with tumor-infiltrating immune cells (TICs) within the TME.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"5029-5039\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476321/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05305-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05305-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ferroptosis in TNBC: interplay with tumor-infiltrating immune cells and therapeutic implications.
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options and a poor prognosis. Immunotherapy has emerged as a promising approach for TNBC, with tumor-infiltrating immune cells (TICs) in the tumor microenvironment (TME) serving as a critical cellular basis for its efficacy. However, the success of immunotherapy in TNBC is often limited due to the immunosuppressive nature of the TME and the heterogeneity of TNBC. Ferroptosis, a form of iron-dependent programmed cell death regulated by metabolic networks including iron, glutathione (GSH), and lipid metabolism, has shown potential to enhance anti-tumor immunity. Recent studies have demonstrated that ferroptosis can modulate immune responses by promoting the infiltration and activation of TICs, thereby improving the outcomes of immunotherapy. However, ferroptosis in immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) can trigger an "immunosuppressive wave," affecting other immune cells in the tumor immune microenvironment. This demonstrates the dual role of ferroptosis in TNBC therapy, emphasizing the need for a nuanced understanding of its effects on different immune cells and tumor cells. Herein, we further elaborate the role of ferroptosis in TNBC cells and its interactions with tumor-infiltrating immune cells (TICs) within the TME.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.