Mathematics of Computation最新文献

筛选
英文 中文
Distribution of recursive matrix pseudorandom number generator modulo prime powers 递归矩阵伪随机数发生器模素数幂的分布
2区 数学
Mathematics of Computation Pub Date : 2023-10-25 DOI: 10.1090/mcom/3895
László Mérai, Igor Shparlinski
{"title":"Distribution of recursive matrix pseudorandom number generator modulo prime powers","authors":"László Mérai, Igor Shparlinski","doi":"10.1090/mcom/3895","DOIUrl":"https://doi.org/10.1090/mcom/3895","url":null,"abstract":"Given a matrix <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A element-of normal upper G normal upper L Subscript d Baseline left-parenthesis double-struck upper Z right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Ain mathrm {GL}_d(mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study the pseudorandomness of vectors <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">mathbf {u}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by a linear recurrence relation of the form <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n plus 1 Baseline identical-to upper A bold u Subscript n Baseline left-parenthesis mod p Superscript t Baseline right-parenthesis comma n equals 0 comma 1 comma ellipsis comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mi>A</mml:mi> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mspace width=\"0.667em\" /> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=\"0.333em\" /> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace width=\"2em\" /> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">begin{equation*} mathbf {u}_{n+1} equiv A mathbf {u}_n pmod {p^t}, qquad n = 0, 1, ldots , end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> modulo <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript t\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> w","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined Selmer equations for the thrice-punctured line in depth two 深度二中三次穿刺线的改进Selmer方程
2区 数学
Mathematics of Computation Pub Date : 2023-10-24 DOI: 10.1090/mcom/3898
Alex Best, L. Betts, Theresa Kumpitsch, Martin Lüdtke, Angus McAndrew, Lie Qian, Elie Studnia, Yujie Xu
{"title":"Refined Selmer equations for the thrice-punctured line in depth two","authors":"Alex Best, L. Betts, Theresa Kumpitsch, Martin Lüdtke, Angus McAndrew, Lie Qian, Elie Studnia, Yujie Xu","doi":"10.1090/mcom/3898","DOIUrl":"https://doi.org/10.1090/mcom/3898","url":null,"abstract":"Kim gave a new proof of Siegel’s Theorem that there are only finitely many <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-integral points on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Subscript double-struck upper Z Superscript 1 Baseline minus StartSet 0 comma 1 comma normal infinity EndSet\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^1_mathbb {Z}setminus {0,1,infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. One advantage of Kim’s method is that it in principle allows one to actually find these points, but the calculations grow vastly more complicated as the size of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> increases. In this paper, we implement a refinement of Kim’s method to explicitly compute various examples where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has size <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which has been introduced by Betts and Dogra. In so doing, we exhibit new examples of a natural generalization of a conjecture of Kim.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135219379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Minimal residual methods in negative or fractional Sobolev norms 负索博列夫范数或分数索博列夫范数的最小残差法
2区 数学
Mathematics of Computation Pub Date : 2023-10-12 DOI: 10.1090/mcom/3904
Harald Monsuur, Rob Stevenson, Johannes Storn
{"title":"Minimal residual methods in negative or fractional Sobolev norms","authors":"Harald Monsuur, Rob Stevenson, Johannes Storn","doi":"10.1090/mcom/3904","DOIUrl":"https://doi.org/10.1090/mcom/3904","url":null,"abstract":"For numerical approximation the reformulation of a PDE as a residual minimisation problem has the advantages that the resulting linear system is symmetric positive definite, and that the norm of the residual provides an a posteriori error estimator. Furthermore, it allows for the treatment of general inhomogeneous boundary conditions. In many minimal residual formulations, however, one or more terms of the residual are measured in negative or fractional Sobolev norms. In this work, we provide a general approach to replace those norms by efficiently evaluable expressions without sacrificing quasi-optimality of the resulting numerical solution. We exemplify our approach by verifying the necessary inf-sup conditions for four formulations of a model second order elliptic equation with inhomogeneous Dirichlet and/or Neumann boundary conditions. We report on numerical experiments for the Poisson problem with mixed inhomogeneous Dirichlet and Neumann boundary conditions in an ultra-weak first order system formulation.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135923277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A classification of genus 0 modular curves with rational points 有有理点的0个模曲线的分类
2区 数学
Mathematics of Computation Pub Date : 2023-10-10 DOI: 10.1090/mcom/3907
None Rakvi
{"title":"A classification of genus 0 modular curves with rational points","authors":"None Rakvi","doi":"10.1090/mcom/3907","DOIUrl":"https://doi.org/10.1090/mcom/3907","url":null,"abstract":"Let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;E&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;E&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a non-CM elliptic curve defined over &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {Q}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. Fix an algebraic closure &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q overbar\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mover&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo accent=\"false\"&gt;¯&lt;!-- ¯ --&gt;&lt;/mml:mo&gt; &lt;/mml:mover&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;{overline {mathbb Q}}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {Q}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. We get a Galois representation &lt;disp-formula content-type=\"math/mathml\"&gt; [ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho Subscript upper E Baseline colon upper G a l left-parenthesis double-struck upper Q overbar slash double-struck upper Q right-parenthesis right-arrow upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;ρ&lt;!-- ρ --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;E&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;:&lt;!-- : --&gt;&lt;/mml:mo&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mi&gt;l&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mover&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo accent=\"false\"&gt;¯&lt;!-- ¯ --&gt;&lt;/mml:mo&gt; &lt;/mml:mover&gt; &lt;/mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mo stretchy=\"false\"&gt;→&lt;!-- → --&gt;&lt;/mml:mo&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;L&lt;/mml:mi&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mover&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;^&lt;!-- ^ --&gt;&lt;/mml","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136254746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniqueness and stability for the solution of a nonlinear least squares problem 一类非线性最小二乘问题解的唯一性和稳定性
2区 数学
Mathematics of Computation Pub Date : 2023-10-06 DOI: 10.1090/mcom/3918
Meng Huang, Zhiqiang Xu
{"title":"Uniqueness and stability for the solution of a nonlinear least squares problem","authors":"Meng Huang, Zhiqiang Xu","doi":"10.1090/mcom/3918","DOIUrl":"https://doi.org/10.1090/mcom/3918","url":null,"abstract":"In this paper, we focus on the nonlinear least squares: $mbox{min}_{mathbf{x} in mathbb{H}^d}| |Amathbf{x}|-mathbf{b}|$ where $Ain mathbb{H}^{mtimes d}$, $mathbf{b} in mathbb{R}^m$ with $mathbb{H} in {mathbb{R},mathbb{C} }$ and consider the uniqueness and stability of solutions. Such problem arises, for instance, in phase retrieval and absolute value rectification neural networks. For the case where $mathbf{b}=|Amathbf{x}_0|$ for some $mathbf{x}_0in mathbb{H}^d$, many results have been developed to characterize the uniqueness and stability of solutions. However, for the case where $mathbf{b} neq |Amathbf{x}_0| $ for any $mathbf{x}_0in mathbb{H}^d$, there is no existing result for it to the best of our knowledge. In this paper, we first focus on the uniqueness of solutions and show for any matrix $Ain mathbb{H}^{m times d}$ there always exists a vector $mathbf{b} in mathbb{R}^m$ such that the solution is not unique. But, in real case, such ``bad'' vectors $mathbf{b}$ are negligible, namely, if $mathbf{b} in mathbb{R}_{+}^m$ does not lie in some measure zero set, then the solution is unique. We also present some conditions under which the solution is unique. For the stability of solutions, we prove that the solution is never uniformly stable. But if we restrict the vectors $mathbf{b}$ to any convex set then it is stable.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tamed stability of finite difference schemes for the transport equation on the half-line 半线上输运方程有限差分格式的驯服稳定性
2区 数学
Mathematics of Computation Pub Date : 2023-10-04 DOI: 10.1090/mcom/3901
Lucas Coeuret
{"title":"Tamed stability of finite difference schemes for the transport equation on the half-line","authors":"Lucas Coeuret","doi":"10.1090/mcom/3901","DOIUrl":"https://doi.org/10.1090/mcom/3901","url":null,"abstract":"In this paper, we prove that, under precise spectral assumptions, some finite difference approximations of scalar leftgoing transport equations on the positive half-line with numerical boundary conditions are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">ell ^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable but <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l Superscript q\"> <mml:semantics> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">ell ^q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-unstable for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">q&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The proof relies on the accurate description of the Green’s function for a particular family of finite rank perturbations of Toeplitz operators whose essential spectrum belongs to the closed unit disk and with a simple eigenvalue of modulus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> embedded into the essential spectrum.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135547407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity 半光滑非线性非线性Schrödinger方程时分裂方法的误差估计
2区 数学
Mathematics of Computation Pub Date : 2023-10-04 DOI: 10.1090/mcom/3900
Weizhu Bao, Chushan Wang
{"title":"Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity","authors":"Weizhu Bao, Chushan Wang","doi":"10.1090/mcom/3900","DOIUrl":"https://doi.org/10.1090/mcom/3900","url":null,"abstract":"We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis rho right-parenthesis equals rho Superscript sigma\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;ρ&lt;!-- ρ --&gt;&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;ρ&lt;!-- ρ --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;σ&lt;!-- σ --&gt;&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;f(rho ) = rho ^sigma&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, where &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho equals StartAbsoluteValue psi EndAbsoluteValue squared\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ρ&lt;!-- ρ --&gt;&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;ψ&lt;!-- ψ --&gt;&lt;/mml:mi&gt; &lt;mml:msup&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msup&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;rho =|psi |^2&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is the density with &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;ψ&lt;!-- ψ --&gt;&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;psi&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; the wave function and &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than 0\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;σ&lt;!-- σ --&gt;&lt;/mml:mi&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;sigma &gt;0&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is the exponent of the semi-smooth nonlinearity. Under the assumption of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H squared\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;H&lt;/mml:mi&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;H^2&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-solution of the NLSE, we prove error bounds at &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half plus sigma Baseline plus h Superscript 1 plus 2 sigma Baseline right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;O&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;τ&lt;!-- τ --&gt;&lt;/mml:mi&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mfrac&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:mfrac&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;σ&lt;!-- σ --&gt;&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135547406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing quadratic points on modular curves 𝑋₀(𝑁) 计算模曲线上的二次点𝑋0(二进制)
2区 数学
Mathematics of Computation Pub Date : 2023-10-03 DOI: 10.1090/mcom/3902
Nikola Adžaga, Timo Keller, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman, Borna Vukorepa
{"title":"Computing quadratic points on modular curves 𝑋₀(𝑁)","authors":"Nikola Adžaga, Timo Keller, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman, Borna Vukorepa","doi":"10.1090/mcom/3902","DOIUrl":"https://doi.org/10.1090/mcom/3902","url":null,"abstract":"In this paper we improve on existing methods to compute quadratic points on modular curves and apply them to successfully find all the quadratic points on all modular curves &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis upper N right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;X&lt;/mml:mi&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;N&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;X_0(N)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; of genus up to &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"8\"&gt; &lt;mml:semantics&gt; &lt;mml:mn&gt;8&lt;/mml:mn&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;8&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, and genus up to &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"10\"&gt; &lt;mml:semantics&gt; &lt;mml:mn&gt;10&lt;/mml:mn&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;10&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; with &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;N&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;N&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; prime, for which they were previously unknown. The values of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;N&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;N&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; we consider are contained in the set &lt;disp-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L equals StartSet 58 comma 68 comma 74 comma 76 comma 80 comma 85 comma 97 comma 98 comma 100 comma 103 comma 107 comma 109 comma 113 comma 121 comma 127 EndSet period\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;L&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mo fence=\"false\" stretchy=\"false\"&gt;{&lt;/mml:mo&gt; &lt;mml:mn&gt;58&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;68&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;74&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;76&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;80&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;85&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;97&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;98&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;100&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;103&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;107&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;109&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;113&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;121&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;127&lt;/mml:mn&gt; &lt;mml:mo fence=\"false\" stretchy=\"false\"&gt;}&lt;/mml:mo&gt; &lt;mml:mo&gt;.&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:ann","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135689172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Randomizing the trapezoidal rule gives the optimal RMSE rate in Gaussian Sobolev spaces 随机化梯形规则给出了高斯Sobolev空间中最优的RMSE率
2区 数学
Mathematics of Computation Pub Date : 2023-09-29 DOI: 10.1090/mcom/3910
Takashi Goda, Yoshihito Kazashi, Yuya Suzuki
{"title":"Randomizing the trapezoidal rule gives the optimal RMSE rate in Gaussian Sobolev spaces","authors":"Takashi Goda, Yoshihito Kazashi, Yuya Suzuki","doi":"10.1090/mcom/3910","DOIUrl":"https://doi.org/10.1090/mcom/3910","url":null,"abstract":"","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135295313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimization of differential equations and algebraic values of 𝐸-functions 最小化的微分方程和代数值𝐸-functions
2区 数学
Mathematics of Computation Pub Date : 2023-09-28 DOI: 10.1090/mcom/3912
Alin Bostan, Tanguy Rivoal, Bruno Salvy
{"title":"Minimization of differential equations and algebraic values of 𝐸-functions","authors":"Alin Bostan, Tanguy Rivoal, Bruno Salvy","doi":"10.1090/mcom/3912","DOIUrl":"https://doi.org/10.1090/mcom/3912","url":null,"abstract":"","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135428054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信