有有理点的0个模曲线的分类

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
None Rakvi
{"title":"有有理点的0个模曲线的分类","authors":"None Rakvi","doi":"10.1090/mcom/3907","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a non-CM elliptic curve defined over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Fix an algebraic closure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q overbar\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\overline {\\mathbb Q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We get a Galois representation <disp-formula content-type=\"math/mathml\"> \\[ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho Subscript upper E Baseline colon upper G a l left-parenthesis double-struck upper Q overbar slash double-struck upper Q right-parenthesis right-arrow upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>E</mml:mi> </mml:msub> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>G</mml:mi> <mml:mi>a</mml:mi> <mml:mi>l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho _E \\colon {Gal}({\\overline {\\mathbb Q}}/\\mathbb {Q})\\to GL_2({\\widehat {\\mathbb {Z}}})</mml:annotation> </mml:semantics> </mml:math> \\] </disp-formula> associated to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by choosing a system of compatible bases for the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torsion subgroups of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E left-parenthesis double-struck upper Q overbar right-parenthesis period\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">E({\\overline {\\mathbb Q}}).</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Associated to an open subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GL_2({\\widehat {\\mathbb {Z}}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfying <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative upper I element-of upper G\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>I</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">-I \\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"det left-parenthesis upper G right-parenthesis equals ModifyingAbove double-struck upper Z With caret Superscript times\"> <mml:semantics> <mml:mrow> <mml:mo movablelimits=\"true\" form=\"prefix\">det</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\det (G)={\\widehat {\\mathbb {Z}}}^{\\times }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we have the modular curve <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X Subscript upper G Baseline comma pi Subscript upper G Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(X_G,\\pi _G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which loosely parametrises elliptic curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the image of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho Subscript upper E\"> <mml:semantics> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>E</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\rho _E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is conjugate to a subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G Superscript t Baseline period\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>G</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G^t.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> In this article we give a complete classification of all such genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> modular curves that have a rational point. This classification is given in finitely many families. Moreover, for each such modular curve morphism <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript upper G Baseline colon upper X Subscript upper G Baseline right-arrow upper X Subscript upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis Baseline\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo>:<!-- : --></mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _G \\colon X_G \\to X_{GL_2({\\widehat {\\mathbb {Z}}})}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be explicitly computed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification of genus 0 modular curves with rational points\",\"authors\":\"None Rakvi\",\"doi\":\"10.1090/mcom/3907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a non-CM elliptic curve defined over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Fix an algebraic closure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q overbar\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\overline {\\\\mathbb Q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We get a Galois representation <disp-formula content-type=\\\"math/mathml\\\"> \\\\[ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho Subscript upper E Baseline colon upper G a l left-parenthesis double-struck upper Q overbar slash double-struck upper Q right-parenthesis right-arrow upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>E</mml:mi> </mml:msub> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>G</mml:mi> <mml:mi>a</mml:mi> <mml:mi>l</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\rho _E \\\\colon {Gal}({\\\\overline {\\\\mathbb Q}}/\\\\mathbb {Q})\\\\to GL_2({\\\\widehat {\\\\mathbb {Z}}})</mml:annotation> </mml:semantics> </mml:math> \\\\] </disp-formula> associated to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by choosing a system of compatible bases for the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torsion subgroups of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E left-parenthesis double-struck upper Q overbar right-parenthesis period\\\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">E({\\\\overline {\\\\mathbb Q}}).</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Associated to an open subgroup <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">GL_2({\\\\widehat {\\\\mathbb {Z}}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfying <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"negative upper I element-of upper G\\\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>I</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">-I \\\\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"det left-parenthesis upper G right-parenthesis equals ModifyingAbove double-struck upper Z With caret Superscript times\\\"> <mml:semantics> <mml:mrow> <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">det</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\det (G)={\\\\widehat {\\\\mathbb {Z}}}^{\\\\times }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we have the modular curve <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper X Subscript upper G Baseline comma pi Subscript upper G Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(X_G,\\\\pi _G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which loosely parametrises elliptic curves <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the image of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho Subscript upper E\\\"> <mml:semantics> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>E</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\rho _E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is conjugate to a subgroup of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G Superscript t Baseline period\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>G</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G^t.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> In this article we give a complete classification of all such genus <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> modular curves that have a rational point. This classification is given in finitely many families. Moreover, for each such modular curve morphism <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi Subscript upper G Baseline colon upper X Subscript upper G Baseline right-arrow upper X Subscript upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis Baseline\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo>:<!-- : --></mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi _G \\\\colon X_G \\\\to X_{GL_2({\\\\widehat {\\\\mathbb {Z}}})}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be explicitly computed.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

设E是在Q上定义的非cm椭圆曲线 \mathbb {q} . 修正一个代数闭包Q¯ {\overline {\mathbb q}} Q的 \mathbb {q} . 我们得到伽罗瓦表示法 \[ ρ E : G a l ( Q ¯ / Q ) → G L 2 ( Z ^ ) \rho _E \colon {Gal}({\overline {\mathbb Q}}/\mathbb {Q})\to GL_2({\widehat {\mathbb {Z}}}) \] 通过为E (Q¯)的N N -扭转子群选择一个相容基体系来关联E (Q¯)。e ({\overline {\mathbb q}})。与gl2 (Z ^) GL_2({\widehat {\mathbb {z}}})满足−I∈G -I \in G和det (G) = Z ^ x \det (g)={\widehat {\mathbb {z}}}^{\times } ,我们有模曲线(xg, π G) (xg,\pi _G) / Q \mathbb {q} 它松散地将椭圆曲线参数化使得ρ E的像 \rho _E共轭于gt的一个子群。G^t。在这篇文章中,我们给出了所有这类有一个有理点的0 0个模曲线的完全分类。这种分类在有限的许多科中都有。此外,对于每一个模曲线态射π G: X G→X G L 2 (Z ^) \pi _g \colon x_g \to x_{gl2 ({\widehat {\mathbb {z}}})} 可以显式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification of genus 0 modular curves with rational points
Let E E be a non-CM elliptic curve defined over Q \mathbb {Q} . Fix an algebraic closure Q ¯ {\overline {\mathbb Q}} of Q \mathbb {Q} . We get a Galois representation \[ ρ E : G a l ( Q ¯ / Q ) G L 2 ( Z ^ ) \rho _E \colon {Gal}({\overline {\mathbb Q}}/\mathbb {Q})\to GL_2({\widehat {\mathbb {Z}}}) \] associated to E E by choosing a system of compatible bases for the N N -torsion subgroups of E ( Q ¯ ) . E({\overline {\mathbb Q}}). Associated to an open subgroup G G of G L 2 ( Z ^ ) GL_2({\widehat {\mathbb {Z}}}) satisfying I G -I \in G and det ( G ) = Z ^ × \det (G)={\widehat {\mathbb {Z}}}^{\times } , we have the modular curve ( X G , π G ) (X_G,\pi _G) over Q \mathbb {Q} which loosely parametrises elliptic curves E E such that the image of ρ E \rho _E is conjugate to a subgroup of G t . G^t. In this article we give a complete classification of all such genus 0 0 modular curves that have a rational point. This classification is given in finitely many families. Moreover, for each such modular curve morphism π G : X G X G L 2 ( Z ^ ) \pi _G \colon X_G \to X_{GL_2({\widehat {\mathbb {Z}}})} can be explicitly computed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信