{"title":"A classification of genus 0 modular curves with rational points","authors":"None Rakvi","doi":"10.1090/mcom/3907","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a non-CM elliptic curve defined over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Fix an algebraic closure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q overbar\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\overline {\\mathbb Q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We get a Galois representation <disp-formula content-type=\"math/mathml\"> \\[ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho Subscript upper E Baseline colon upper G a l left-parenthesis double-struck upper Q overbar slash double-struck upper Q right-parenthesis right-arrow upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>E</mml:mi> </mml:msub> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>G</mml:mi> <mml:mi>a</mml:mi> <mml:mi>l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho _E \\colon {Gal}({\\overline {\\mathbb Q}}/\\mathbb {Q})\\to GL_2({\\widehat {\\mathbb {Z}}})</mml:annotation> </mml:semantics> </mml:math> \\] </disp-formula> associated to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by choosing a system of compatible bases for the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torsion subgroups of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E left-parenthesis double-struck upper Q overbar right-parenthesis period\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">E({\\overline {\\mathbb Q}}).</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Associated to an open subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GL_2({\\widehat {\\mathbb {Z}}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfying <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative upper I element-of upper G\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>I</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">-I \\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"det left-parenthesis upper G right-parenthesis equals ModifyingAbove double-struck upper Z With caret Superscript times\"> <mml:semantics> <mml:mrow> <mml:mo movablelimits=\"true\" form=\"prefix\">det</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\det (G)={\\widehat {\\mathbb {Z}}}^{\\times }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we have the modular curve <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X Subscript upper G Baseline comma pi Subscript upper G Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(X_G,\\pi _G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which loosely parametrises elliptic curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the image of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho Subscript upper E\"> <mml:semantics> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>E</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\rho _E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is conjugate to a subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G Superscript t Baseline period\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>G</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G^t.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> In this article we give a complete classification of all such genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> modular curves that have a rational point. This classification is given in finitely many families. Moreover, for each such modular curve morphism <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript upper G Baseline colon upper X Subscript upper G Baseline right-arrow upper X Subscript upper G upper L 2 left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis Baseline\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo>:<!-- : --></mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi _G \\colon X_G \\to X_{GL_2({\\widehat {\\mathbb {Z}}})}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be explicitly computed.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"70 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3907","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let EE be a non-CM elliptic curve defined over Q\mathbb {Q}. Fix an algebraic closure Q¯{\overline {\mathbb Q}} of Q\mathbb {Q}. We get a Galois representation \[ ρE:Gal(Q¯/Q)→GL2(Z^)\rho _E \colon {Gal}({\overline {\mathbb Q}}/\mathbb {Q})\to GL_2({\widehat {\mathbb {Z}}}) \] associated to EE by choosing a system of compatible bases for the NN-torsion subgroups of E(Q¯).E({\overline {\mathbb Q}}). Associated to an open subgroup GG of GL2(Z^)GL_2({\widehat {\mathbb {Z}}}) satisfying −I∈G-I \in G and det(G)=Z^×\det (G)={\widehat {\mathbb {Z}}}^{\times }, we have the modular curve (XG,πG)(X_G,\pi _G) over Q\mathbb {Q} which loosely parametrises elliptic curves EE such that the image of ρE\rho _E is conjugate to a subgroup of Gt.G^t. In this article we give a complete classification of all such genus 00 modular curves that have a rational point. This classification is given in finitely many families. Moreover, for each such modular curve morphism πG:XG→XGL2(Z^)\pi _G \colon X_G \to X_{GL_2({\widehat {\mathbb {Z}}})} can be explicitly computed.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.