Nikola Adžaga, Timo Keller, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman, Borna Vukorepa
求助PDF
{"title":"计算模曲线上的二次点𝑋0(二进制)","authors":"Nikola Adžaga, Timo Keller, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman, Borna Vukorepa","doi":"10.1090/mcom/3902","DOIUrl":null,"url":null,"abstract":"In this paper we improve on existing methods to compute quadratic points on modular curves and apply them to successfully find all the quadratic points on all modular curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis upper N right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of genus up to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"8\"> <mml:semantics> <mml:mn>8</mml:mn> <mml:annotation encoding=\"application/x-tex\">8</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and genus up to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"10\"> <mml:semantics> <mml:mn>10</mml:mn> <mml:annotation encoding=\"application/x-tex\">10</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> prime, for which they were previously unknown. The values of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we consider are contained in the set <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L equals StartSet 58 comma 68 comma 74 comma 76 comma 80 comma 85 comma 97 comma 98 comma 100 comma 103 comma 107 comma 109 comma 113 comma 121 comma 127 EndSet period\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>58</mml:mn> <mml:mo>,</mml:mo> <mml:mn>68</mml:mn> <mml:mo>,</mml:mo> <mml:mn>74</mml:mn> <mml:mo>,</mml:mo> <mml:mn>76</mml:mn> <mml:mo>,</mml:mo> <mml:mn>80</mml:mn> <mml:mo>,</mml:mo> <mml:mn>85</mml:mn> <mml:mo>,</mml:mo> <mml:mn>97</mml:mn> <mml:mo>,</mml:mo> <mml:mn>98</mml:mn> <mml:mo>,</mml:mo> <mml:mn>100</mml:mn> <mml:mo>,</mml:mo> <mml:mn>103</mml:mn> <mml:mo>,</mml:mo> <mml:mn>107</mml:mn> <mml:mo>,</mml:mo> <mml:mn>109</mml:mn> <mml:mo>,</mml:mo> <mml:mn>113</mml:mn> <mml:mo>,</mml:mo> <mml:mn>121</mml:mn> <mml:mo>,</mml:mo> <mml:mn>127</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\mathcal {L}=\\{58, 68, 74, 76, 80, 85, 97, 98, 100, 103, 107, 109, 113, 121, 127 \\}. \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> We obtain that all the non-cuspidal quadratic points on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis upper N right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N element-of script upper L\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N\\in \\mathcal {L}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are complex multiplication (CM) points, except for one pair of Galois conjugate points on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis 103 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>103</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(103)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defined over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot 2885 EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mn>2885</mml:mn> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt {2885})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also compute the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j\"> <mml:semantics> <mml:mi>j</mml:mi> <mml:annotation encoding=\"application/x-tex\">j</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariants of the elliptic curves parametrised by these points, and for the CM points determine their geometric endomorphism rings.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computing quadratic points on modular curves 𝑋₀(𝑁)\",\"authors\":\"Nikola Adžaga, Timo Keller, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman, Borna Vukorepa\",\"doi\":\"10.1090/mcom/3902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we improve on existing methods to compute quadratic points on modular curves and apply them to successfully find all the quadratic points on all modular curves <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X 0 left-parenthesis upper N right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">X_0(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of genus up to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"8\\\"> <mml:semantics> <mml:mn>8</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">8</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and genus up to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"10\\\"> <mml:semantics> <mml:mn>10</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">10</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> prime, for which they were previously unknown. The values of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we consider are contained in the set <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper L equals StartSet 58 comma 68 comma 74 comma 76 comma 80 comma 85 comma 97 comma 98 comma 100 comma 103 comma 107 comma 109 comma 113 comma 121 comma 127 EndSet period\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">L</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mn>58</mml:mn> <mml:mo>,</mml:mo> <mml:mn>68</mml:mn> <mml:mo>,</mml:mo> <mml:mn>74</mml:mn> <mml:mo>,</mml:mo> <mml:mn>76</mml:mn> <mml:mo>,</mml:mo> <mml:mn>80</mml:mn> <mml:mo>,</mml:mo> <mml:mn>85</mml:mn> <mml:mo>,</mml:mo> <mml:mn>97</mml:mn> <mml:mo>,</mml:mo> <mml:mn>98</mml:mn> <mml:mo>,</mml:mo> <mml:mn>100</mml:mn> <mml:mo>,</mml:mo> <mml:mn>103</mml:mn> <mml:mo>,</mml:mo> <mml:mn>107</mml:mn> <mml:mo>,</mml:mo> <mml:mn>109</mml:mn> <mml:mo>,</mml:mo> <mml:mn>113</mml:mn> <mml:mo>,</mml:mo> <mml:mn>121</mml:mn> <mml:mo>,</mml:mo> <mml:mn>127</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\mathcal {L}=\\\\{58, 68, 74, 76, 80, 85, 97, 98, 100, 103, 107, 109, 113, 121, 127 \\\\}. \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> We obtain that all the non-cuspidal quadratic points on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X 0 left-parenthesis upper N right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">X_0(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N element-of script upper L\\\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">L</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N\\\\in \\\\mathcal {L}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are complex multiplication (CM) points, except for one pair of Galois conjugate points on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X 0 left-parenthesis 103 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>103</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">X_0(103)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defined over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q left-parenthesis StartRoot 2885 EndRoot right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msqrt> <mml:mn>2885</mml:mn> </mml:msqrt> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}(\\\\sqrt {2885})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also compute the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"j\\\"> <mml:semantics> <mml:mi>j</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">j</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariants of the elliptic curves parametrised by these points, and for the CM points determine their geometric endomorphism rings.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5
引用
批量引用
Computing quadratic points on modular curves 𝑋₀(𝑁)
In this paper we improve on existing methods to compute quadratic points on modular curves and apply them to successfully find all the quadratic points on all modular curves X 0 ( N ) X_0(N) of genus up to 8 8 , and genus up to 10 10 with N N prime, for which they were previously unknown. The values of N N we consider are contained in the set L = { 58 , 68 , 74 , 76 , 80 , 85 , 97 , 98 , 100 , 103 , 107 , 109 , 113 , 121 , 127 } . \begin{equation*} \mathcal {L}=\{58, 68, 74, 76, 80, 85, 97, 98, 100, 103, 107, 109, 113, 121, 127 \}. \end{equation*} We obtain that all the non-cuspidal quadratic points on X 0 ( N ) X_0(N) for N ∈ L N\in \mathcal {L} are complex multiplication (CM) points, except for one pair of Galois conjugate points on X 0 ( 103 ) X_0(103) defined over Q ( 2885 ) \mathbb {Q}(\sqrt {2885}) . We also compute the j j -invariants of the elliptic curves parametrised by these points, and for the CM points determine their geometric endomorphism rings.