Distribution of recursive matrix pseudorandom number generator modulo prime powers

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
László Mérai, Igor Shparlinski
{"title":"Distribution of recursive matrix pseudorandom number generator modulo prime powers","authors":"László Mérai, Igor Shparlinski","doi":"10.1090/mcom/3895","DOIUrl":null,"url":null,"abstract":"Given a matrix <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A element-of normal upper G normal upper L Subscript d Baseline left-parenthesis double-struck upper Z right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\in \\mathrm {GL}_d(\\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study the pseudorandomness of vectors <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbf {u}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by a linear recurrence relation of the form <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n plus 1 Baseline identical-to upper A bold u Subscript n Baseline left-parenthesis mod p Superscript t Baseline right-parenthesis comma n equals 0 comma 1 comma ellipsis comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mi>A</mml:mi> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mspace width=\"0.667em\" /> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=\"0.333em\" /> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace width=\"2em\" /> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\mathbf {u}_{n+1} \\equiv A \\mathbf {u}_n \\pmod {p^t}, \\qquad n = 0, 1, \\ldots , \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> modulo <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript t\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with a fixed prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and sufficiently large integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t greater-than-or-slanted-equals 1\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t \\geqslant 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study such sequences over very short segments of length which has not been accessible via previously used methods. Our technique is based on the method of N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654–670, 672] of estimating double Weyl sums and a fully explicit form of the Vinogradov mean value theorem due to K. Ford [Proc. London Math. Soc. (3) 85 (2002), pp. 565–633]. This is combined with some ideas from the work of I. E. Shparlinski [Proc. Voronezh State Pedagogical Inst., 197 (1978), 74–85 (in Russian)] which allows us to construct polynomial representations of the coordinates of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbf {u}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and control the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic orders of their coefficients in polynomial representations.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"53 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3895","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Given a matrix A G L d ( Z ) A\in \mathrm {GL}_d(\mathbb {Z}) . We study the pseudorandomness of vectors u n \mathbf {u}_n generated by a linear recurrence relation of the form u n + 1 A u n ( mod p t ) , n = 0 , 1 , , \begin{equation*} \mathbf {u}_{n+1} \equiv A \mathbf {u}_n \pmod {p^t}, \qquad n = 0, 1, \ldots , \end{equation*} modulo p t p^t with a fixed prime p p and sufficiently large integer t 1 t \geqslant 1 . We study such sequences over very short segments of length which has not been accessible via previously used methods. Our technique is based on the method of N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654–670, 672] of estimating double Weyl sums and a fully explicit form of the Vinogradov mean value theorem due to K. Ford [Proc. London Math. Soc. (3) 85 (2002), pp. 565–633]. This is combined with some ideas from the work of I. E. Shparlinski [Proc. Voronezh State Pedagogical Inst., 197 (1978), 74–85 (in Russian)] which allows us to construct polynomial representations of the coordinates of u n \mathbf {u}_n and control the p p -adic orders of their coefficients in polynomial representations.
递归矩阵伪随机数发生器模素数幂的分布
给定矩阵a∈gl d(Z) a \in\mathrm GL_d{(}\mathbb Z{)。我们研究向量u n }\mathbf u_n{的伪随机性,由形式为u n + 1≡a u n (mod p t), n = 0,1,…,}\begin{equation*} \mathbf {u}_{n+1} \equiv A \mathbf {u}_n \pmod {p^t}, \qquad n = 0, 1, \ldots , \end{equation*}模p t p^t与固定素数p p和足够大的整数t大于或等于1 t \geqslant 1的线性递归关系生成。我们研究这样的序列在非常短的片段长度,这是无法通过以前使用的方法访问。我们的技术是基于N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654-670, 672]估计双Weyl和的方法和K. Ford的Vinogradov中值定理的完全显式形式[Proc. London mathematics]。Soc。(3) 85 (2002), pp. 565-633。这与I. E. Shparlinski [Proc. Voronezh State Pedagogical institute ., 197 (1978), 74-85 (in Russian)]的一些想法相结合,它允许我们构建u n \mathbf u_n{坐标的多项式表示,并在多项式表示中控制其系数的p p进阶。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信