Distribution of recursive matrix pseudorandom number generator modulo prime powers

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
László Mérai, Igor Shparlinski
{"title":"Distribution of recursive matrix pseudorandom number generator modulo prime powers","authors":"László Mérai, Igor Shparlinski","doi":"10.1090/mcom/3895","DOIUrl":null,"url":null,"abstract":"Given a matrix <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A element-of normal upper G normal upper L Subscript d Baseline left-parenthesis double-struck upper Z right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\in \\mathrm {GL}_d(\\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study the pseudorandomness of vectors <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbf {u}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by a linear recurrence relation of the form <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n plus 1 Baseline identical-to upper A bold u Subscript n Baseline left-parenthesis mod p Superscript t Baseline right-parenthesis comma n equals 0 comma 1 comma ellipsis comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mi>A</mml:mi> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mspace width=\"0.667em\" /> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=\"0.333em\" /> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace width=\"2em\" /> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\mathbf {u}_{n+1} \\equiv A \\mathbf {u}_n \\pmod {p^t}, \\qquad n = 0, 1, \\ldots , \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> modulo <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript t\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with a fixed prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and sufficiently large integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t greater-than-or-slanted-equals 1\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t \\geqslant 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study such sequences over very short segments of length which has not been accessible via previously used methods. Our technique is based on the method of N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654–670, 672] of estimating double Weyl sums and a fully explicit form of the Vinogradov mean value theorem due to K. Ford [Proc. London Math. Soc. (3) 85 (2002), pp. 565–633]. This is combined with some ideas from the work of I. E. Shparlinski [Proc. Voronezh State Pedagogical Inst., 197 (1978), 74–85 (in Russian)] which allows us to construct polynomial representations of the coordinates of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbf {u}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and control the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic orders of their coefficients in polynomial representations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a matrix A G L d ( Z ) A\in \mathrm {GL}_d(\mathbb {Z}) . We study the pseudorandomness of vectors u n \mathbf {u}_n generated by a linear recurrence relation of the form u n + 1 A u n ( mod p t ) , n = 0 , 1 , , \begin{equation*} \mathbf {u}_{n+1} \equiv A \mathbf {u}_n \pmod {p^t}, \qquad n = 0, 1, \ldots , \end{equation*} modulo p t p^t with a fixed prime p p and sufficiently large integer t 1 t \geqslant 1 . We study such sequences over very short segments of length which has not been accessible via previously used methods. Our technique is based on the method of N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654–670, 672] of estimating double Weyl sums and a fully explicit form of the Vinogradov mean value theorem due to K. Ford [Proc. London Math. Soc. (3) 85 (2002), pp. 565–633]. This is combined with some ideas from the work of I. E. Shparlinski [Proc. Voronezh State Pedagogical Inst., 197 (1978), 74–85 (in Russian)] which allows us to construct polynomial representations of the coordinates of u n \mathbf {u}_n and control the p p -adic orders of their coefficients in polynomial representations.
递归矩阵伪随机数发生器模素数幂的分布
给定矩阵a∈gl d(Z) a \in\mathrm GL_d{(}\mathbb Z{)。我们研究向量u n }\mathbf u_n{的伪随机性,由形式为u n + 1≡a u n (mod p t), n = 0,1,…,}\begin{equation*} \mathbf {u}_{n+1} \equiv A \mathbf {u}_n \pmod {p^t}, \qquad n = 0, 1, \ldots , \end{equation*}模p t p^t与固定素数p p和足够大的整数t大于或等于1 t \geqslant 1的线性递归关系生成。我们研究这样的序列在非常短的片段长度,这是无法通过以前使用的方法访问。我们的技术是基于N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654-670, 672]估计双Weyl和的方法和K. Ford的Vinogradov中值定理的完全显式形式[Proc. London mathematics]。Soc。(3) 85 (2002), pp. 565-633。这与I. E. Shparlinski [Proc. Voronezh State Pedagogical institute ., 197 (1978), 74-85 (in Russian)]的一些想法相结合,它允许我们构建u n \mathbf u_n{坐标的多项式表示,并在多项式表示中控制其系数的p p进阶。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信