{"title":"Distribution of recursive matrix pseudorandom number generator modulo prime powers","authors":"László Mérai, Igor Shparlinski","doi":"10.1090/mcom/3895","DOIUrl":null,"url":null,"abstract":"Given a matrix <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A element-of normal upper G normal upper L Subscript d Baseline left-parenthesis double-struck upper Z right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\in \\mathrm {GL}_d(\\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study the pseudorandomness of vectors <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbf {u}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by a linear recurrence relation of the form <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n plus 1 Baseline identical-to upper A bold u Subscript n Baseline left-parenthesis mod p Superscript t Baseline right-parenthesis comma n equals 0 comma 1 comma ellipsis comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mi>A</mml:mi> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mspace width=\"0.667em\" /> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=\"0.333em\" /> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace width=\"2em\" /> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\mathbf {u}_{n+1} \\equiv A \\mathbf {u}_n \\pmod {p^t}, \\qquad n = 0, 1, \\ldots , \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> modulo <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript t\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with a fixed prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and sufficiently large integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t greater-than-or-slanted-equals 1\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t \\geqslant 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study such sequences over very short segments of length which has not been accessible via previously used methods. Our technique is based on the method of N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654–670, 672] of estimating double Weyl sums and a fully explicit form of the Vinogradov mean value theorem due to K. Ford [Proc. London Math. Soc. (3) 85 (2002), pp. 565–633]. This is combined with some ideas from the work of I. E. Shparlinski [Proc. Voronezh State Pedagogical Inst., 197 (1978), 74–85 (in Russian)] which allows us to construct polynomial representations of the coordinates of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold u Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">u</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbf {u}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and control the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic orders of their coefficients in polynomial representations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a matrix A∈GLd(Z)A\in \mathrm {GL}_d(\mathbb {Z}). We study the pseudorandomness of vectors un\mathbf {u}_n generated by a linear recurrence relation of the form un+1≡Aun(modpt),n=0,1,…,\begin{equation*} \mathbf {u}_{n+1} \equiv A \mathbf {u}_n \pmod {p^t}, \qquad n = 0, 1, \ldots , \end{equation*} modulo ptp^t with a fixed prime pp and sufficiently large integer t⩾1t \geqslant 1. We study such sequences over very short segments of length which has not been accessible via previously used methods. Our technique is based on the method of N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654–670, 672] of estimating double Weyl sums and a fully explicit form of the Vinogradov mean value theorem due to K. Ford [Proc. London Math. Soc. (3) 85 (2002), pp. 565–633]. This is combined with some ideas from the work of I. E. Shparlinski [Proc. Voronezh State Pedagogical Inst., 197 (1978), 74–85 (in Russian)] which allows us to construct polynomial representations of the coordinates of un\mathbf {u}_n and control the pp-adic orders of their coefficients in polynomial representations.
给定矩阵a∈gl d(Z) a \in\mathrm GL_d{(}\mathbb Z{)。我们研究向量u n }\mathbf u_n{的伪随机性,由形式为u n + 1≡a u n (mod p t), n = 0,1,…,}\begin{equation*} \mathbf {u}_{n+1} \equiv A \mathbf {u}_n \pmod {p^t}, \qquad n = 0, 1, \ldots , \end{equation*}模p t p^t与固定素数p p和足够大的整数t大于或等于1 t \geqslant 1的线性递归关系生成。我们研究这样的序列在非常短的片段长度,这是无法通过以前使用的方法访问。我们的技术是基于N. M. Korobov [Mat. Sb. (N.S.) 89(131) (1972), pp. 654-670, 672]估计双Weyl和的方法和K. Ford的Vinogradov中值定理的完全显式形式[Proc. London mathematics]。Soc。(3) 85 (2002), pp. 565-633。这与I. E. Shparlinski [Proc. Voronezh State Pedagogical institute ., 197 (1978), 74-85 (in Russian)]的一些想法相结合,它允许我们构建u n \mathbf u_n{坐标的多项式表示,并在多项式表示中控制其系数的p p进阶。}