Uniqueness and stability for the solution of a nonlinear least squares problem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Meng Huang, Zhiqiang Xu
{"title":"Uniqueness and stability for the solution of a nonlinear least squares problem","authors":"Meng Huang, Zhiqiang Xu","doi":"10.1090/mcom/3918","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the nonlinear least squares: $\\mbox{min}_{\\mathbf{x} \\in \\mathbb{H}^d}\\| |A\\mathbf{x}|-\\mathbf{b}\\|$ where $A\\in \\mathbb{H}^{m\\times d}$, $\\mathbf{b} \\in \\mathbb{R}^m$ with $\\mathbb{H} \\in \\{\\mathbb{R},\\mathbb{C} \\}$ and consider the uniqueness and stability of solutions. Such problem arises, for instance, in phase retrieval and absolute value rectification neural networks. For the case where $\\mathbf{b}=|A\\mathbf{x}_0|$ for some $\\mathbf{x}_0\\in \\mathbb{H}^d$, many results have been developed to characterize the uniqueness and stability of solutions. However, for the case where $\\mathbf{b} \\neq |A\\mathbf{x}_0| $ for any $\\mathbf{x}_0\\in \\mathbb{H}^d$, there is no existing result for it to the best of our knowledge. In this paper, we first focus on the uniqueness of solutions and show for any matrix $A\\in \\mathbb{H}^{m \\times d}$ there always exists a vector $\\mathbf{b} \\in \\mathbb{R}^m$ such that the solution is not unique. But, in real case, such ``bad'' vectors $\\mathbf{b}$ are negligible, namely, if $\\mathbf{b} \\in \\mathbb{R}_{+}^m$ does not lie in some measure zero set, then the solution is unique. We also present some conditions under which the solution is unique. For the stability of solutions, we prove that the solution is never uniformly stable. But if we restrict the vectors $\\mathbf{b}$ to any convex set then it is stable.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the nonlinear least squares: $\mbox{min}_{\mathbf{x} \in \mathbb{H}^d}\| |A\mathbf{x}|-\mathbf{b}\|$ where $A\in \mathbb{H}^{m\times d}$, $\mathbf{b} \in \mathbb{R}^m$ with $\mathbb{H} \in \{\mathbb{R},\mathbb{C} \}$ and consider the uniqueness and stability of solutions. Such problem arises, for instance, in phase retrieval and absolute value rectification neural networks. For the case where $\mathbf{b}=|A\mathbf{x}_0|$ for some $\mathbf{x}_0\in \mathbb{H}^d$, many results have been developed to characterize the uniqueness and stability of solutions. However, for the case where $\mathbf{b} \neq |A\mathbf{x}_0| $ for any $\mathbf{x}_0\in \mathbb{H}^d$, there is no existing result for it to the best of our knowledge. In this paper, we first focus on the uniqueness of solutions and show for any matrix $A\in \mathbb{H}^{m \times d}$ there always exists a vector $\mathbf{b} \in \mathbb{R}^m$ such that the solution is not unique. But, in real case, such ``bad'' vectors $\mathbf{b}$ are negligible, namely, if $\mathbf{b} \in \mathbb{R}_{+}^m$ does not lie in some measure zero set, then the solution is unique. We also present some conditions under which the solution is unique. For the stability of solutions, we prove that the solution is never uniformly stable. But if we restrict the vectors $\mathbf{b}$ to any convex set then it is stable.
一类非线性最小二乘问题解的唯一性和稳定性
本文主要研究非线性最小二乘法:$\mbox{min}_{\mathbf{x} \ In \mathbb{H}^d}\| A\mathbf{x}|-\mathbf{b}\|$其中$A\ mathbb{H}^{m\乘以d}$, $\mathbf{b} \ In \mathbb{R}^m$与$\mathbb{H} \ In \mathbb{R},\mathbb{C} \}$,并考虑解的唯一性和稳定性。例如,在相位检索和绝对值校正神经网络中就会出现这样的问题。对于$\mathbf{b}=|A\mathbf{x}_0|$对于\mathbb{H}^d$中的$\mathbf{x}_0\的情况,已经开发了许多结果来表征解的唯一性和稳定性。然而,对于$\mathbf{b} \neq |A\mathbf{x}_0| $对于\mathbb{H}^d$中的任何$\mathbf{x}_0\ $的情况,据我们所知,它没有现有的结果。在本文中,我们首先关注解的唯一性,并证明对于任意矩阵$A\ \mathbb{H}^{m \乘以d}$,总存在一个向量$\mathbf{b} \ \在\mathbb{R}^m$中使得解不唯一。但是,在实际情况中,这样的“坏”向量$\mathbf{b}$是可以忽略不计的,也就是说,如果$\mathbf{b} \在\mathbb{R}_{+}^m$中不存在于某个度量零集中,那么解是唯一的。我们还给出了解唯一的一些条件。对于解的稳定性,我们证明了解绝不是一致稳定的。但是如果我们限制向量$\mathbf{b}$到任意凸集,那么它是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信