Mathematics of Computation最新文献

筛选
英文 中文
On the Diophantine equation 𝑈_{𝑛}-𝑏^{𝑚}=𝑐 丢番图方程𝑈_{𝑛}-𝑏^{𝑚}=𝑐
2区 数学
Mathematics of Computation Pub Date : 2023-05-15 DOI: 10.1090/mcom/3854
Sebastian Heintze, Robert Tichy, Ingrid Vukusic, Volker Ziegler
{"title":"On the Diophantine equation 𝑈_{𝑛}-𝑏^{𝑚}=𝑐","authors":"Sebastian Heintze, Robert Tichy, Ingrid Vukusic, Volker Ziegler","doi":"10.1090/mcom/3854","DOIUrl":"https://doi.org/10.1090/mcom/3854","url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper U Subscript n Baseline right-parenthesis Subscript n element-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(U_n)_{nin mathbb {N}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N 0\"> <mml:semantics> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">N_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b comma c element-of double-struck upper Z\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">b,cin mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b greater-than upper B\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">b&gt; B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the equation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U Subscript n Baseline minus b Superscript m Baseline equals c\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>b</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">U_n - b^m = c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has at most two distinct solutions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134959022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Uniform stability for local discontinuous Galerkin methods with implicit-explicit Runge-Kutta time discretizations for linear convection-diffusion equation 线性对流扩散方程的隐-显龙格-库塔时间离散局部不连续Galerkin方法的一致稳定性
2区 数学
Mathematics of Computation Pub Date : 2023-05-15 DOI: 10.1090/mcom/3842
Haijin Wang, Fengyan Li, Chi-Wang Shu, Qiang Zhang
{"title":"Uniform stability for local discontinuous Galerkin methods with implicit-explicit Runge-Kutta time discretizations for linear convection-diffusion equation","authors":"Haijin Wang, Fengyan Li, Chi-Wang Shu, Qiang Zhang","doi":"10.1090/mcom/3842","DOIUrl":"https://doi.org/10.1090/mcom/3842","url":null,"abstract":"In this paper, we consider the linear convection-diffusion equation in one dimension with periodic boundary conditions, and analyze the stability of fully discrete methods that are defined with local discontinuous Galerkin (LDG) methods in space and several implicit-explicit (IMEX) Runge-Kutta methods in time. By using the forward temporal differences and backward temporal differences, respectively, we establish two general frameworks of the energy-method based stability analysis. From here, the fully discrete schemes being considered are shown to have monotonicity stability, i.e. the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm of the numerical solution does not increase in time, under the time step condition <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau less-than-or-equal-to script upper F left-parenthesis h slash c comma d slash c squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>c</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">tau le mathcal {F}(h/c, d/c^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with the convection coefficient <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c\"> <mml:semantics> <mml:mi>c</mml:mi> <mml:annotation encoding=\"application/x-tex\">c</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the diffusion coefficient <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the mesh size <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" ","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134959096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inexact restoration for minimization with inexact evaluation both of the objective function and the constraints 目标函数和约束条件均不精确的最小化不精确恢复
2区 数学
Mathematics of Computation Pub Date : 2023-05-11 DOI: 10.1090/mcom/3855
L. Bueno, F. Larreal, J. Martínez
{"title":"Inexact restoration for minimization with inexact evaluation both of the objective function and the constraints","authors":"L. Bueno, F. Larreal, J. Martínez","doi":"10.1090/mcom/3855","DOIUrl":"https://doi.org/10.1090/mcom/3855","url":null,"abstract":"In a recent paper an Inexact Restoration method for solving continuous constrained optimization problems was analyzed from the point of view of worst-case functional complexity and convergence. On the other hand, the Inexact Restoration methodology was employed, in a different research, to handle minimization problems with inexact evaluation and simple constraints. These two methodologies are combined in the present report, for constrained minimization problems in which both the objective function and the constraints, as well as their derivatives, are subject to evaluation errors. Together with a complete description of the method, complexity and convergence results will be proved.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135421550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Computing eigenvalues of the Laplacian on rough domains 粗糙域上拉普拉斯特征值的计算
2区 数学
Mathematics of Computation Pub Date : 2023-05-10 DOI: 10.1090/mcom/3827
Frank Rösler, Alexei Stepanenko
{"title":"Computing eigenvalues of the Laplacian on rough domains","authors":"Frank Rösler, Alexei Stepanenko","doi":"10.1090/mcom/3827","DOIUrl":"https://doi.org/10.1090/mcom/3827","url":null,"abstract":"We prove a general Mosco convergence theorem for bounded Euclidean domains satisfying a set of mild geometric hypotheses. For bounded domains, this notion implies norm-resolvent convergence for the Dirichlet Laplacian which in turn ensures spectral convergence. A key element of the proof is the development of a novel, explicit Poincaré-type inequality. These results allow us to construct a universal algorithm capable of computing the eigenvalues of the Dirichlet Laplacian on a wide class of rough domains. Many domains with fractal boundaries, such as the Koch snowflake and certain filled Julia sets, are included among this class. Conversely, we construct a counterexample showing that there does not exist a universal algorithm of the same type capable of computing the eigenvalues of the Dirichlet Laplacian on an arbitrary bounded domain.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135572689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error estimates of a finite volume method for the compressible Navier–Stokes–Fourier system 可压缩Navier-Stokes-Fourier系统有限体积法的误差估计
2区 数学
Mathematics of Computation Pub Date : 2023-05-08 DOI: 10.1090/mcom/3852
Danica Basarić, Mária Lukáčova-Medvidova, Hana Mizerová, Bangwei She, Yuhuan Yuan
{"title":"Error estimates of a finite volume method for the compressible Navier–Stokes–Fourier system","authors":"Danica Basarić, Mária Lukáčova-Medvidova, Hana Mizerová, Bangwei She, Yuhuan Yuan","doi":"10.1090/mcom/3852","DOIUrl":"https://doi.org/10.1090/mcom/3852","url":null,"abstract":"In this paper we study the convergence rate of a finite volume approximation of the compressible Navier–Stokes–Fourier system. To this end we first show the local existence of a regular unique strong solution and analyse its global extension in time as far as the density and temperature remain bounded. We make a physically reasonable assumption that the numerical density and temperature are uniformly bounded from above and below. The relative energy provides us an elegant way to derive a priori error estimates between finite volume solutions and the strong solution.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135807200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse trace tests 稀疏跟踪测试
2区 数学
Mathematics of Computation Pub Date : 2023-05-08 DOI: 10.1090/mcom/3849
Taylor Brysiewicz, Michael Burr
{"title":"Sparse trace tests","authors":"Taylor Brysiewicz, Michael Burr","doi":"10.1090/mcom/3849","DOIUrl":"https://doi.org/10.1090/mcom/3849","url":null,"abstract":"We establish how the coefficients of a sparse polynomial system influence the sum (or the trace) of its zeros. As an application, we develop numerical tests for verifying whether a set of solutions to a sparse system is complete. These algorithms extend the classical trace test in numerical algebraic geometry. Our results rely on both the analysis of the structure of sparse resultants as well as an extension of Esterov’s results on monodromy groups of sparse systems.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135806629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Coupling conditions for linear hyperbolic relaxation systems in two-scale problems 双尺度问题中线性双曲松弛系统的耦合条件
2区 数学
Mathematics of Computation Pub Date : 2023-05-08 DOI: 10.1090/mcom/3845
Juntao Huang, Ruo Li, Yizhou Zhou
{"title":"Coupling conditions for linear hyperbolic relaxation systems in two-scale problems","authors":"Juntao Huang, Ruo Li, Yizhou Zhou","doi":"10.1090/mcom/3845","DOIUrl":"https://doi.org/10.1090/mcom/3845","url":null,"abstract":"This work is concerned with coupling conditions for linear hyperbolic relaxation systems with multiple relaxation times. In the region with a small relaxation time, an equilibrium system can be used for computational efficiency. The key assumption is that the relaxation system satisfies Yong’s structural stability condition [J. Differential Equations, 155 (1999), pp. 89–132]. For the non-characteristic case, we derive a coupling condition at the interface to couple two systems in a domain decomposition setting. We prove the validity by the energy estimate and Laplace transform, which shows how the error of the domain decomposition method depends on the smaller relaxation time and the boundary-layer effects. In addition, we propose a discontinuous Galerkin (DG) numerical scheme for solving the interface problem with the derived coupling condition and prove the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> stability. We validate our analysis on the linearized Carleman model and the linearized Grad’s moment system and show the effectiveness of the DG scheme.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135845488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and analysis of a HDG solution for the total-flux formulation of the convected Helmholtz equation 共轭亥姆霍兹方程全通量公式的HDG解的构造和分析
2区 数学
Mathematics of Computation Pub Date : 2023-05-04 DOI: 10.1090/mcom/3850
Hélène Barucq, Nathan Rouxelin, Sébastien Tordeux
{"title":"Construction and analysis of a HDG solution for the total-flux formulation of the convected Helmholtz equation","authors":"Hélène Barucq, Nathan Rouxelin, Sébastien Tordeux","doi":"10.1090/mcom/3850","DOIUrl":"https://doi.org/10.1090/mcom/3850","url":null,"abstract":"We introduce a hybridizable discontinuous Galerkin (HDG) method for the convected Helmholtz equation based on the total flux formulation, in which the vector unknown represents both diffusive and convective phenomena. This HDG method is constricted with the same interpolation degree for all the unknowns and a physically informed value for the penalization parameter is computed. A detailed analysis including local and global well-posedness as well as a super-convergence result is carried out. We then provide numerical experiments to illustrate the theoretical results.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136265188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem 奇异摄动对流扩散问题局部不连续Galerkin方法的超逼近性
2区 数学
Mathematics of Computation Pub Date : 2023-05-04 DOI: 10.1090/mcom/3844
Yao Cheng, Shan Jiang, Martin Stynes
{"title":"Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem","authors":"Yao Cheng, Shan Jiang, Martin Stynes","doi":"10.1090/mcom/3844","DOIUrl":"https://doi.org/10.1090/mcom/3844","url":null,"abstract":"A singularly perturbed convection-diffusion problem posed on the unit square in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 slash 2 right-parenthesis Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{-(k+1/2)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accurate in the energy norm induced by the bilinear form of the weak formulation, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 right-parenthesis Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mro","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136231610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Divisibility conditions on the order of the reductions of algebraic numbers 代数数约化阶上的可整除性条件
2区 数学
Mathematics of Computation Pub Date : 2023-05-03 DOI: 10.1090/mcom/3848
Pietro Sgobba
{"title":"Divisibility conditions on the order of the reductions of algebraic numbers","authors":"Pietro Sgobba","doi":"10.1090/mcom/3848","DOIUrl":"https://doi.org/10.1090/mcom/3848","url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a number field, and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Superscript times\"> <mml:semantics> <mml:msup> <mml:mi>K</mml:mi> <mml:mo>×<!-- × --></mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">K^times</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Without relying on the Generalized Riemann Hypothesis we prove an asymptotic formula for the number of primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the order of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper G mod German p right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo lspace=\"thickmathspace\" rspace=\"thickmathspace\">mod</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(Gbmod mathfrak p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which the order is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134922467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信