{"title":"Quadratic points on bielliptic modular curves","authors":"Filip Najman, Borna Vukorepa","doi":"10.1090/mcom/3805","DOIUrl":null,"url":null,"abstract":"Bruin and Najman [LMS J. Comput. Math. 18 (2015), pp. 578–602], Ozman and Siksek [Math. Comp. 88 (2019), pp. 2461–2484], and Box [Math. Comp. 90 (2021), pp. 321–343] described all the quadratic points on the modular curves of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 less-than-or-equal-to g left-parenthesis upper X 0 left-parenthesis n right-parenthesis right-parenthesis less-than-or-equal-to 5\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2\\leq g(X_0(n)) \\leq 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Since all the hyperelliptic curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"less-than-or-equal-to 5\"> <mml:semantics> <mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\leq 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and as a curve can have infinitely many quadratic points only if it is either of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"less-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\leq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, hyperelliptic or bielliptic, the question of describing the quadratic points on the bielliptic modular curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> naturally arises; this question has recently also been posed by Mazur. We answer Mazur’s question completely and describe the quadratic points on all the bielliptic modular curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which this has not been done already. The values of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that we deal with are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 60\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>60</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n=60</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"62\"> <mml:semantics> <mml:mn>62</mml:mn> <mml:annotation encoding=\"application/x-tex\">62</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"69\"> <mml:semantics> <mml:mn>69</mml:mn> <mml:annotation encoding=\"application/x-tex\">69</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"79\"> <mml:semantics> <mml:mn>79</mml:mn> <mml:annotation encoding=\"application/x-tex\">79</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"83\"> <mml:semantics> <mml:mn>83</mml:mn> <mml:annotation encoding=\"application/x-tex\">83</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"89\"> <mml:semantics> <mml:mn>89</mml:mn> <mml:annotation encoding=\"application/x-tex\">89</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"92\"> <mml:semantics> <mml:mn>92</mml:mn> <mml:annotation encoding=\"application/x-tex\">92</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"94\"> <mml:semantics> <mml:mn>94</mml:mn> <mml:annotation encoding=\"application/x-tex\">94</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"95\"> <mml:semantics> <mml:mn>95</mml:mn> <mml:annotation encoding=\"application/x-tex\">95</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"101\"> <mml:semantics> <mml:mn>101</mml:mn> <mml:annotation encoding=\"application/x-tex\">101</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"119\"> <mml:semantics> <mml:mn>119</mml:mn> <mml:annotation encoding=\"application/x-tex\">119</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"131\"> <mml:semantics> <mml:mn>131</mml:mn> <mml:annotation encoding=\"application/x-tex\">131</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; the curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are of genus up to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"11\"> <mml:semantics> <mml:mn>11</mml:mn> <mml:annotation encoding=\"application/x-tex\">11</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We find all the exceptional points on these curves and show that they all correspond to CM elliptic curves. The two main methods we use are Box’s relative symmetric Chabauty method and an application of a moduli description of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-curves of degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with an independent isogeny of degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which reduces the problem to finding the rational points on several quotients of modular curves.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"43 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3805","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
Bruin and Najman [LMS J. Comput. Math. 18 (2015), pp. 578–602], Ozman and Siksek [Math. Comp. 88 (2019), pp. 2461–2484], and Box [Math. Comp. 90 (2021), pp. 321–343] described all the quadratic points on the modular curves of genus 2≤g(X0(n))≤52\leq g(X_0(n)) \leq 5. Since all the hyperelliptic curves X0(n)X_0(n) are of genus ≤5\leq 5 and as a curve can have infinitely many quadratic points only if it is either of genus ≤1\leq 1, hyperelliptic or bielliptic, the question of describing the quadratic points on the bielliptic modular curves X0(n)X_0(n) naturally arises; this question has recently also been posed by Mazur. We answer Mazur’s question completely and describe the quadratic points on all the bielliptic modular curves X0(n)X_0(n) for which this has not been done already. The values of nn that we deal with are n=60n=60, 6262, 6969, 7979, 8383, 8989, 9292, 9494, 9595, 101101, 119119 and 131131; the curves X0(n)X_0(n) are of genus up to 1111. We find all the exceptional points on these curves and show that they all correspond to CM elliptic curves. The two main methods we use are Box’s relative symmetric Chabauty method and an application of a moduli description of Q\mathbb {Q}-curves of degree dd with an independent isogeny of degree mm, which reduces the problem to finding the rational points on several quotients of modular curves.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.