Quadratic points on bielliptic modular curves

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Filip Najman, Borna Vukorepa
{"title":"Quadratic points on bielliptic modular curves","authors":"Filip Najman, Borna Vukorepa","doi":"10.1090/mcom/3805","DOIUrl":null,"url":null,"abstract":"Bruin and Najman [LMS J. Comput. Math. 18 (2015), pp. 578–602], Ozman and Siksek [Math. Comp. 88 (2019), pp. 2461–2484], and Box [Math. Comp. 90 (2021), pp. 321–343] described all the quadratic points on the modular curves of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 less-than-or-equal-to g left-parenthesis upper X 0 left-parenthesis n right-parenthesis right-parenthesis less-than-or-equal-to 5\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2\\leq g(X_0(n)) \\leq 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Since all the hyperelliptic curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"less-than-or-equal-to 5\"> <mml:semantics> <mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\leq 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and as a curve can have infinitely many quadratic points only if it is either of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"less-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\leq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, hyperelliptic or bielliptic, the question of describing the quadratic points on the bielliptic modular curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> naturally arises; this question has recently also been posed by Mazur. We answer Mazur’s question completely and describe the quadratic points on all the bielliptic modular curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which this has not been done already. The values of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that we deal with are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 60\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>60</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n=60</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"62\"> <mml:semantics> <mml:mn>62</mml:mn> <mml:annotation encoding=\"application/x-tex\">62</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"69\"> <mml:semantics> <mml:mn>69</mml:mn> <mml:annotation encoding=\"application/x-tex\">69</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"79\"> <mml:semantics> <mml:mn>79</mml:mn> <mml:annotation encoding=\"application/x-tex\">79</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"83\"> <mml:semantics> <mml:mn>83</mml:mn> <mml:annotation encoding=\"application/x-tex\">83</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"89\"> <mml:semantics> <mml:mn>89</mml:mn> <mml:annotation encoding=\"application/x-tex\">89</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"92\"> <mml:semantics> <mml:mn>92</mml:mn> <mml:annotation encoding=\"application/x-tex\">92</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"94\"> <mml:semantics> <mml:mn>94</mml:mn> <mml:annotation encoding=\"application/x-tex\">94</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"95\"> <mml:semantics> <mml:mn>95</mml:mn> <mml:annotation encoding=\"application/x-tex\">95</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"101\"> <mml:semantics> <mml:mn>101</mml:mn> <mml:annotation encoding=\"application/x-tex\">101</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"119\"> <mml:semantics> <mml:mn>119</mml:mn> <mml:annotation encoding=\"application/x-tex\">119</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"131\"> <mml:semantics> <mml:mn>131</mml:mn> <mml:annotation encoding=\"application/x-tex\">131</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; the curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are of genus up to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"11\"> <mml:semantics> <mml:mn>11</mml:mn> <mml:annotation encoding=\"application/x-tex\">11</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We find all the exceptional points on these curves and show that they all correspond to CM elliptic curves. The two main methods we use are Box’s relative symmetric Chabauty method and an application of a moduli description of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-curves of degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with an independent isogeny of degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which reduces the problem to finding the rational points on several quotients of modular curves.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"43 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3805","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Bruin and Najman [LMS J. Comput. Math. 18 (2015), pp. 578–602], Ozman and Siksek [Math. Comp. 88 (2019), pp. 2461–2484], and Box [Math. Comp. 90 (2021), pp. 321–343] described all the quadratic points on the modular curves of genus 2 g ( X 0 ( n ) ) 5 2\leq g(X_0(n)) \leq 5 . Since all the hyperelliptic curves X 0 ( n ) X_0(n) are of genus 5 \leq 5 and as a curve can have infinitely many quadratic points only if it is either of genus 1 \leq 1 , hyperelliptic or bielliptic, the question of describing the quadratic points on the bielliptic modular curves X 0 ( n ) X_0(n) naturally arises; this question has recently also been posed by Mazur. We answer Mazur’s question completely and describe the quadratic points on all the bielliptic modular curves X 0 ( n ) X_0(n) for which this has not been done already. The values of n n that we deal with are n = 60 n=60 , 62 62 , 69 69 , 79 79 , 83 83 , 89 89 , 92 92 , 94 94 , 95 95 , 101 101 , 119 119 and 131 131 ; the curves X 0 ( n ) X_0(n) are of genus up to 11 11 . We find all the exceptional points on these curves and show that they all correspond to CM elliptic curves. The two main methods we use are Box’s relative symmetric Chabauty method and an application of a moduli description of Q \mathbb {Q} -curves of degree d d with an independent isogeny of degree m m , which reduces the problem to finding the rational points on several quotients of modular curves.
双椭圆模曲线上的二次点
Bruin和Najman [LMS J. Comput]。数学,18 (2015),pp. 578-602], Ozman和Siksek[数学。Comp. 88 (2019), pp. 2461-2484],和Box[数学]。Comp. 90 (2021), pp. 321-343]描述了格2≤g(x0 (n))≤5.2 \leq g(X_0(n)) \leq上的所有二次点5。由于所有的超椭圆曲线x0 (n) X_0(n)都是格≤5 \leq 5,并且一条曲线只有在格≤1 \leq 1、超椭圆或双椭圆时才能有无穷多个二次点,因此在双椭圆模曲线x0 (n) X_0(n)上描述二次点的问题自然就产生了;Mazur最近也提出了这个问题。我们完整地回答了Mazur的问题,并描述了所有尚未做过的双椭圆模曲线x0 (n) X_0(n)上的二次点。我们处理的n n的值是n=60 n=60 62 62 69 69 79 79 83 83 89 89 92 92 94 94 95 95 101 101 119 119和131 131;曲线x0 (n) x0 (n)的格值一直到1111。我们找到了这些曲线上的所有异常点,并证明它们都对应于CM椭圆曲线。我们使用的两种主要方法是Box的相对对称Chabauty方法和Q的模描述(\mathbb), {Q} - d次曲线具有独立的等构次mm,它将问题简化为在模曲线的几个商上寻找有理点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信