{"title":"Generalized Gearhart-Koshy acceleration for the Kaczmarz method","authors":"Janosch Rieger","doi":"10.1090/mcom/3818","DOIUrl":null,"url":null,"abstract":"The Kaczmarz method is an iterative numerical method for solving large and sparse rectangular systems of linear equations. Gearhart, Koshy and Tam have developed an acceleration technique for the Kaczmarz method that minimizes the distance to the desired solution in the direction of a full Kaczmarz step. The present paper generalizes this technique to an acceleration scheme that minimizes the Euclidean norm error over an affine subspace spanned by a number of previous iterates and one additional cycle of the Kaczmarz method. The key challenge is to find a formulation in which all parameters of the least-squares problem defining the unique minimizer are known, and to solve this problem efficiently. When only a single Kaczmarz cycle is considered, the proposed affine search is more effective than the Gearhart-Koshy/Tam line-search, which in turn is more effective than the underlying Kaczmarz method. A numerical experiment from the context of computerized tomography suggests that the proposed affine search has the potential to outperform the the Gearhart-Koshy/Tam line-search and the underlying Kaczmarz method in terms of the computational cost that is needed to achieve a given error tolerance.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"70 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3818","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Kaczmarz method is an iterative numerical method for solving large and sparse rectangular systems of linear equations. Gearhart, Koshy and Tam have developed an acceleration technique for the Kaczmarz method that minimizes the distance to the desired solution in the direction of a full Kaczmarz step. The present paper generalizes this technique to an acceleration scheme that minimizes the Euclidean norm error over an affine subspace spanned by a number of previous iterates and one additional cycle of the Kaczmarz method. The key challenge is to find a formulation in which all parameters of the least-squares problem defining the unique minimizer are known, and to solve this problem efficiently. When only a single Kaczmarz cycle is considered, the proposed affine search is more effective than the Gearhart-Koshy/Tam line-search, which in turn is more effective than the underlying Kaczmarz method. A numerical experiment from the context of computerized tomography suggests that the proposed affine search has the potential to outperform the the Gearhart-Koshy/Tam line-search and the underlying Kaczmarz method in terms of the computational cost that is needed to achieve a given error tolerance.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.