Near-optimal approximation methods for elliptic PDEs with lognormal coefficients

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Albert Cohen, Giovanni Migliorati
{"title":"Near-optimal approximation methods for elliptic PDEs with lognormal coefficients","authors":"Albert Cohen, Giovanni Migliorati","doi":"10.1090/mcom/3825","DOIUrl":null,"url":null,"abstract":"This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus d i v left-parenthesis a nabla u right-parenthesis equals f\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">-\\operatorname {div}(a\\nabla u)=f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a equals exp left-parenthesis b right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>=</mml:mo> <mml:mi>exp</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a=\\exp (b)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Gaussian random field. The approximant of the solution <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding=\"application/x-tex\">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-term polynomial expansion in the scalar Gaussian random variables that parametrize <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We present a general convergence analysis of weighted least-squares approximants for smooth and arbitrarily rough random field, using a suitable random design, for which we prove optimality in the following sense: their convergence rate matches exactly or closely the rate that has been established in Bachmayr, Cohen, DeVore, and Migliorati [ESAIM Math. Model. Numer. Anal. 51 (2017), pp. 341–363] for best <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-term approximation by Hermite polynomials, under the same minimial assumptions on the Gaussian random field. This is in contrast with the current state of the art results for the stochastic Galerkin method that suffers the lack of coercivity due to the lognormal nature of the diffusion field. Numerical tests with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as the Brownian bridge confirm our theoretical findings.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"20 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3825","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form div ( a u ) = f -\operatorname {div}(a\nabla u)=f where a = exp ( b ) a=\exp (b) and b b is a Gaussian random field. The approximant of the solution u u is an n n -term polynomial expansion in the scalar Gaussian random variables that parametrize b b . We present a general convergence analysis of weighted least-squares approximants for smooth and arbitrarily rough random field, using a suitable random design, for which we prove optimality in the following sense: their convergence rate matches exactly or closely the rate that has been established in Bachmayr, Cohen, DeVore, and Migliorati [ESAIM Math. Model. Numer. Anal. 51 (2017), pp. 341–363] for best n n -term approximation by Hermite polynomials, under the same minimial assumptions on the Gaussian random field. This is in contrast with the current state of the art results for the stochastic Galerkin method that suffers the lack of coercivity due to the lognormal nature of the diffusion field. Numerical tests with b b as the Brownian bridge confirm our theoretical findings.
对数正态系数椭圆偏微分方程的近最优逼近方法
本文研究了对数正态系数为- div(a∇u)=f - \operatorname div{(a }\nabla u)=f的椭圆偏微分方程的数值逼近方法,其中a= exp (b) a= \exp (b), b b为高斯随机场。解u u的近似值是在参数化b b的标量高斯随机变量中的n n项多项式展开式。我们提出了光滑和任意粗糙随机场的加权最小二乘近似的一般收敛分析,使用合适的随机设计,我们在以下意义上证明了最优性:它们的收敛速度完全或接近于Bachmayr, Cohen, DeVore和Migliorati [ESAIM Math]中建立的速度。模型。数字。在高斯随机场的相同最小假设下,通过Hermite多项式获得最佳n n项近似。这与由于扩散场的对数正态性质而缺乏矫顽力的随机伽辽金方法的当前技术结果形成对比。以b b为布朗桥的数值试验证实了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信