{"title":"Near-optimal approximation methods for elliptic PDEs with lognormal coefficients","authors":"Albert Cohen, Giovanni Migliorati","doi":"10.1090/mcom/3825","DOIUrl":null,"url":null,"abstract":"This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus d i v left-parenthesis a nabla u right-parenthesis equals f\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">-\\operatorname {div}(a\\nabla u)=f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a equals exp left-parenthesis b right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>=</mml:mo> <mml:mi>exp</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a=\\exp (b)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Gaussian random field. The approximant of the solution <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding=\"application/x-tex\">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-term polynomial expansion in the scalar Gaussian random variables that parametrize <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We present a general convergence analysis of weighted least-squares approximants for smooth and arbitrarily rough random field, using a suitable random design, for which we prove optimality in the following sense: their convergence rate matches exactly or closely the rate that has been established in Bachmayr, Cohen, DeVore, and Migliorati [ESAIM Math. Model. Numer. Anal. 51 (2017), pp. 341–363] for best <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-term approximation by Hermite polynomials, under the same minimial assumptions on the Gaussian random field. This is in contrast with the current state of the art results for the stochastic Galerkin method that suffers the lack of coercivity due to the lognormal nature of the diffusion field. Numerical tests with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as the Brownian bridge confirm our theoretical findings.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"20 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3825","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form −div(a∇u)=f-\operatorname {div}(a\nabla u)=f where a=exp(b)a=\exp (b) and bb is a Gaussian random field. The approximant of the solution uu is an nn-term polynomial expansion in the scalar Gaussian random variables that parametrize bb. We present a general convergence analysis of weighted least-squares approximants for smooth and arbitrarily rough random field, using a suitable random design, for which we prove optimality in the following sense: their convergence rate matches exactly or closely the rate that has been established in Bachmayr, Cohen, DeVore, and Migliorati [ESAIM Math. Model. Numer. Anal. 51 (2017), pp. 341–363] for best nn-term approximation by Hermite polynomials, under the same minimial assumptions on the Gaussian random field. This is in contrast with the current state of the art results for the stochastic Galerkin method that suffers the lack of coercivity due to the lognormal nature of the diffusion field. Numerical tests with bb as the Brownian bridge confirm our theoretical findings.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.