{"title":"Convergence of a regularized finite element discretization of the two-dimensional Monge–Ampère equation","authors":"D. Gallistl, Ngoc Tien Tran","doi":"10.1090/mcom/3794","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a regularization of the Monge–Ampère equation in planar convex domains through uniformly elliptic Hamilton–Jacobi–Bellman equations. The regularized problem possesses a unique strong solution <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript epsilon\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>u</mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">u_\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and is accessible to the discretization with finite elements. This work establishes uniform convergence of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript epsilon\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>u</mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">u_\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to the convex Alexandrov solution <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to the Monge–Ampère equation as the regularization parameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\">\n <mml:semantics>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> approaches <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\n <mml:semantics>\n <mml:mn>0</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A mixed finite element method for the approximation of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript epsilon\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>u</mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">u_\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is proposed, and the regularized finite element scheme is shown to be uniformly convergent. The class of admissible right-hand sides are the functions that can be approximated from below by positive continuous functions in the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> norm. Numerical experiments provide empirical evidence for the efficient approximation of singular solutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3794","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a regularization of the Monge–Ampère equation in planar convex domains through uniformly elliptic Hamilton–Jacobi–Bellman equations. The regularized problem possesses a unique strong solution uεu_\varepsilon and is accessible to the discretization with finite elements. This work establishes uniform convergence of uεu_\varepsilon to the convex Alexandrov solution uu to the Monge–Ampère equation as the regularization parameter ε\varepsilon approaches 00. A mixed finite element method for the approximation of uεu_\varepsilon is proposed, and the regularized finite element scheme is shown to be uniformly convergent. The class of admissible right-hand sides are the functions that can be approximated from below by positive continuous functions in the L1L^1 norm. Numerical experiments provide empirical evidence for the efficient approximation of singular solutions uu.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.