变密度变黏度不可压缩Navier-Stokes方程MAC格式的收敛性

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
L. Batteux, T. Gallouët, R. Herbin, J. Latché, P. Poullet
{"title":"变密度变黏度不可压缩Navier-Stokes方程MAC格式的收敛性","authors":"L. Batteux, T. Gallouët, R. Herbin, J. Latché, P. Poullet","doi":"10.1090/mcom/3803","DOIUrl":null,"url":null,"abstract":"The present paper addresses the convergence of the implicit Marker-and-Cell scheme for time-dependent Navier–Stokes equations with variable density and density-dependent viscosity and forcing term. A priori estimates on the unknowns are obtained, and thanks to a topological degree argument, they lead to the existence of an approximate solution at each time step. Then, by compactness arguments relying on these same estimates, we obtain the convergence (up to the extraction of a subsequence), when the space and time steps tend to zero, of the numerical solutions to a limit; this latter is shown to be a weak solution to the continuous problem by passing to the limit in the scheme.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"41 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of the MAC scheme for the incompressible Navier-Stokes equations with variable density and viscosity\",\"authors\":\"L. Batteux, T. Gallouët, R. Herbin, J. Latché, P. Poullet\",\"doi\":\"10.1090/mcom/3803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper addresses the convergence of the implicit Marker-and-Cell scheme for time-dependent Navier–Stokes equations with variable density and density-dependent viscosity and forcing term. A priori estimates on the unknowns are obtained, and thanks to a topological degree argument, they lead to the existence of an approximate solution at each time step. Then, by compactness arguments relying on these same estimates, we obtain the convergence (up to the extraction of a subsequence), when the space and time steps tend to zero, of the numerical solutions to a limit; this latter is shown to be a weak solution to the continuous problem by passing to the limit in the scheme.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3803\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3803","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了具有变密度和密度依赖粘度和强迫项的时变Navier-Stokes方程的隐式Marker-and-Cell格式的收敛性。对未知量进行先验估计,并且由于拓扑度参数,它们导致在每个时间步存在近似解。然后,通过紧性参数依赖于这些相同的估计,我们得到了收敛性(直到提取子序列),当空间和时间步长趋于零时,数值解的极限;通过传递到方案中的极限,证明了后者是连续问题的弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of the MAC scheme for the incompressible Navier-Stokes equations with variable density and viscosity
The present paper addresses the convergence of the implicit Marker-and-Cell scheme for time-dependent Navier–Stokes equations with variable density and density-dependent viscosity and forcing term. A priori estimates on the unknowns are obtained, and thanks to a topological degree argument, they lead to the existence of an approximate solution at each time step. Then, by compactness arguments relying on these same estimates, we obtain the convergence (up to the extraction of a subsequence), when the space and time steps tend to zero, of the numerical solutions to a limit; this latter is shown to be a weak solution to the continuous problem by passing to the limit in the scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信