Refined Selmer equations for the thrice-punctured line in depth two

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alex Best, L. Betts, Theresa Kumpitsch, Martin Lüdtke, Angus McAndrew, Lie Qian, Elie Studnia, Yujie Xu
{"title":"Refined Selmer equations for the thrice-punctured line in depth two","authors":"Alex Best, L. Betts, Theresa Kumpitsch, Martin Lüdtke, Angus McAndrew, Lie Qian, Elie Studnia, Yujie Xu","doi":"10.1090/mcom/3898","DOIUrl":null,"url":null,"abstract":"Kim gave a new proof of Siegel’s Theorem that there are only finitely many <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-integral points on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Subscript double-struck upper Z Superscript 1 Baseline minus StartSet 0 comma 1 comma normal infinity EndSet\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^1_\\mathbb {Z}\\setminus \\{0,1,\\infty \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. One advantage of Kim’s method is that it in principle allows one to actually find these points, but the calculations grow vastly more complicated as the size of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> increases. In this paper, we implement a refinement of Kim’s method to explicitly compute various examples where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has size <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which has been introduced by Betts and Dogra. In so doing, we exhibit new examples of a natural generalization of a conjecture of Kim.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Kim gave a new proof of Siegel’s Theorem that there are only finitely many S S -integral points on P Z 1 { 0 , 1 , } \mathbb {P}^1_\mathbb {Z}\setminus \{0,1,\infty \} . One advantage of Kim’s method is that it in principle allows one to actually find these points, but the calculations grow vastly more complicated as the size of S S increases. In this paper, we implement a refinement of Kim’s method to explicitly compute various examples where S S has size 2 2 which has been introduced by Betts and Dogra. In so doing, we exhibit new examples of a natural generalization of a conjecture of Kim.
深度二中三次穿刺线的改进Selmer方程
Kim给出了西格尔定理的一个新的证明,证明在P Z 1∈{0,1,∞}\mathbb P{^1_ }\mathbb Z{}\setminus {0,1, \infty}上只有有限多个S -积分点。Kim的方法的一个优点是,它原则上允许人们实际找到这些点,但随着S的大小增加,计算变得非常复杂。在本文中,我们实现了Kim的方法的改进,以显式地计算由Betts和Dogra引入的S的大小为22的各种示例。在这样做的过程中,我们展示了Kim猜想的自然推广的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信