{"title":"Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity","authors":"Weizhu Bao, Chushan Wang","doi":"10.1090/mcom/3900","DOIUrl":null,"url":null,"abstract":"We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis rho right-parenthesis equals rho Superscript sigma\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>σ<!-- σ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(\\rho ) = \\rho ^\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho equals StartAbsoluteValue psi EndAbsoluteValue squared\"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho =|\\psi |^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the density with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the wave function and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the exponent of the semi-smooth nonlinearity. Under the assumption of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H squared\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we prove error bounds at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half plus sigma Baseline plus h Superscript 1 plus 2 sigma Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{\\frac {1}{2}+\\sigma } + h^{1+2\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau plus h squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau + h^{2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than sigma less-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0>\\sigma \\leq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\geq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively, and an error bound at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half Baseline plus h right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^\\frac {1}{2} + h)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\geq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the mesh size and time step size, respectively. In addition, when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half greater-than sigma greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\frac {1}{2}>\\sigma >1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and under the assumption of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H cubed\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we show an error bound at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript sigma Baseline plus h Superscript 2 sigma Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{\\sigma } + h^{2\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than sigma less-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0 > \\sigma \\leq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and to establish an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">l^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conditional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability to obtain the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">l^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bound of the numerical solution by using the mathematical induction and the error estimates for the case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\ge \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"34 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3900","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity f(ρ)=ρσf(\rho ) = \rho ^\sigma, where ρ=|ψ|2\rho =|\psi |^2 is the density with ψ\psi the wave function and σ>0\sigma >0 is the exponent of the semi-smooth nonlinearity. Under the assumption of H2H^2-solution of the NLSE, we prove error bounds at O(τ12+σ+h1+2σ)O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma }) and O(τ+h2)O(\tau + h^{2}) in L2L^2-norm for 0>σ≤120>\sigma \leq \frac {1}{2} and σ≥12\sigma \geq \frac {1}{2}, respectively, and an error bound at O(τ12+h)O(\tau ^\frac {1}{2} + h) in H1H^1-norm for σ≥12\sigma \geq \frac {1}{2}, where hh and τ\tau are the mesh size and time step size, respectively. In addition, when 12>σ>1\frac {1}{2}>\sigma >1 and under the assumption of H3H^3-solution of the NLSE, we show an error bound at O(τσ+h2σ)O(\tau ^{\sigma } + h^{2\sigma }) in H1H^1-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional L2L^2-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of 0>σ≤120 > \sigma \leq \frac {1}{2}, and to establish an l∞l^\infty-conditional H1H^1-stability to obtain the l∞l^\infty-bound of the numerical solution by using the mathematical induction and the error estimates for the case of σ≥12\sigma \ge \frac {1}{2}; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.