半光滑非线性非线性Schrödinger方程时分裂方法的误差估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Weizhu Bao, Chushan Wang
{"title":"半光滑非线性非线性Schrödinger方程时分裂方法的误差估计","authors":"Weizhu Bao, Chushan Wang","doi":"10.1090/mcom/3900","DOIUrl":null,"url":null,"abstract":"We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis rho right-parenthesis equals rho Superscript sigma\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>σ<!-- σ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(\\rho ) = \\rho ^\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho equals StartAbsoluteValue psi EndAbsoluteValue squared\"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho =|\\psi |^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the density with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the wave function and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the exponent of the semi-smooth nonlinearity. Under the assumption of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H squared\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we prove error bounds at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half plus sigma Baseline plus h Superscript 1 plus 2 sigma Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{\\frac {1}{2}+\\sigma } + h^{1+2\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau plus h squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau + h^{2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than sigma less-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0&gt;\\sigma \\leq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\geq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively, and an error bound at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half Baseline plus h right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^\\frac {1}{2} + h)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\geq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the mesh size and time step size, respectively. In addition, when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half greater-than sigma greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>&gt;</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\frac {1}{2}&gt;\\sigma &gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and under the assumption of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H cubed\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we show an error bound at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript sigma Baseline plus h Superscript 2 sigma Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{\\sigma } + h^{2\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than sigma less-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0 &gt; \\sigma \\leq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and to establish an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">l^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conditional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability to obtain the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">l^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bound of the numerical solution by using the mathematical induction and the error estimates for the case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\ge \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity\",\"authors\":\"Weizhu Bao, Chushan Wang\",\"doi\":\"10.1090/mcom/3900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f left-parenthesis rho right-parenthesis equals rho Superscript sigma\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>σ<!-- σ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f(\\\\rho ) = \\\\rho ^\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho equals StartAbsoluteValue psi EndAbsoluteValue squared\\\"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\rho =|\\\\psi |^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the density with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"psi\\\"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the wave function and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the exponent of the semi-smooth nonlinearity. Under the assumption of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H squared\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we prove error bounds at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis tau Superscript one half plus sigma Baseline plus h Superscript 1 plus 2 sigma Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\tau ^{\\\\frac {1}{2}+\\\\sigma } + h^{1+2\\\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis tau plus h squared right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\tau + h^{2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than sigma less-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">0&gt;\\\\sigma \\\\leq \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma \\\\geq \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively, and an error bound at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis tau Superscript one half Baseline plus h right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\tau ^\\\\frac {1}{2} + h)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma \\\\geq \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\"> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the mesh size and time step size, respectively. In addition, when <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"one half greater-than sigma greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>&gt;</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\frac {1}{2}&gt;\\\\sigma &gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and under the assumption of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H cubed\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we show an error bound at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis tau Superscript sigma Baseline plus h Superscript 2 sigma Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\tau ^{\\\\sigma } + h^{2\\\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than sigma less-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">0 &gt; \\\\sigma \\\\leq \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and to establish an <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"l Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">l^\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conditional <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability to obtain the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"l Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">l^\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bound of the numerical solution by using the mathematical induction and the error estimates for the case of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma \\\\ge \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

针对半光滑非线性方程f(ρ) = ρ σ f(\rho ) = \rho ^\sigma ,其中ρ = | ψ | 2 \rho =|\psi ^2是带ψ的密度 \psi 波函数和σ &gt;0 \sigma &gt;0为半光滑非线性的指数。在NLSE的H^2解的假设下,我们证明了在O(τ 1 2 + σ + H 1 + 2 σ) O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma })和O(τ + h2) O(\tau + h^{2}L^2 - 0 &gt的范数;σ≤1 20 &gt;\sigma \leq \frac {1}{2} σ≥1 2 \sigma \geq \frac {1}{2} ,以及O(τ 12 + h) O(\tau ^\frac {1}{2} + h) h ^1 - σ≥1的范数 \sigma \geq \frac {1}{2} ,其中h h和τ \tau 分别为网格尺寸和时间步长。另外,当1 2 &gt;σ &gt;1 \frac {1}{2}&gt;\sigma &gt;1和在NLSE的h3h ^3解的假设下,我们给出了在O(τ σ + H 2 σ) O(\tau ^{\sigma } + h^{2\sigma }) H^1 -范数。在我们的证明中采用了两个关键因素:一是为了避免对0 &gt情况下的数值解进行先验估计,采用了数值流的无条件l2l ^2稳定性;σ≤1 20 &gt; \sigma \leq \frac {1}{2} 建立一个l∞l^\infty -条件H^1 H^1 -稳定性得到l∞l^\infty 在σ≥12的情况下,用数学归纳法得到了数值解的-界和误差估计 \sigma \ge \frac {1}{2} ;二是引入正则化技术,避免了半光滑非线性的奇异性,从而得到改进的局部截断误差。最后,用数值结果证明了我们的误差范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity
We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity f ( ρ ) = ρ σ f(\rho ) = \rho ^\sigma , where ρ = | ψ | 2 \rho =|\psi |^2 is the density with ψ \psi the wave function and σ > 0 \sigma >0 is the exponent of the semi-smooth nonlinearity. Under the assumption of H 2 H^2 -solution of the NLSE, we prove error bounds at O ( τ 1 2 + σ + h 1 + 2 σ ) O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma }) and O ( τ + h 2 ) O(\tau + h^{2}) in L 2 L^2 -norm for 0 > σ 1 2 0>\sigma \leq \frac {1}{2} and σ 1 2 \sigma \geq \frac {1}{2} , respectively, and an error bound at O ( τ 1 2 + h ) O(\tau ^\frac {1}{2} + h) in H 1 H^1 -norm for σ 1 2 \sigma \geq \frac {1}{2} , where h h and τ \tau are the mesh size and time step size, respectively. In addition, when 1 2 > σ > 1 \frac {1}{2}>\sigma >1 and under the assumption of H 3 H^3 -solution of the NLSE, we show an error bound at O ( τ σ + h 2 σ ) O(\tau ^{\sigma } + h^{2\sigma }) in H 1 H^1 -norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional L 2 L^2 -stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of 0 > σ 1 2 0 > \sigma \leq \frac {1}{2} , and to establish an l l^\infty -conditional H 1 H^1 -stability to obtain the l l^\infty -bound of the numerical solution by using the mathematical induction and the error estimates for the case of σ 1 2 \sigma \ge \frac {1}{2} ; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信