{"title":"Utilizing the carbon nano-belt (8-CNB) loaded late second-row transition metal (TM) single-atom catalysts for hydrogen and oxygen evolution during water electrolysis","authors":"Abdulrahman Allangawi , Shimna Biju , Remabai Balachandran , Khurshid Ayub , Mazhar Amjad Gilani , Muhammad Imran , Tariq Mahmood","doi":"10.1016/j.mssp.2024.109139","DOIUrl":"10.1016/j.mssp.2024.109139","url":null,"abstract":"<div><div>Production of high purity of hydrogen and oxygen via water electrolysis is setback by the high overpotential associated with water splitting. In this regard, herein the use of late second-row transition metal (TM) doped carbon nano-belt (8-CNB) as single atom catalysts for water electrolysis is investigated via density functional theory (DFT) calculations. The unique unsaturated belt-shaped structure of 8-CNB introduces functional sites that are suitable for TM anchoring. As such, the designed catalysts have shown high stability. The high stability was found to originate from the chemisorption of the metals to the support, as confirmed by the quantum theory of atoms in molecules (QTAIM) analysis. Moreover, the doped structures have shown low frontier molecular orbitals gap (HOMO-LUMO E<sub>gap</sub>) values, indicating sufficient electrical conductivities, which is desirable in water electrolysis to facilitate the transfer of electrons. Furthermore, the catalytic activity results have shown that the Ru@8-CNB and Rh@8-CNB systems are highly active towards the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Results have shown that Ru@8-CNB exhibits a low Δ<em>G</em><sub>H</sub> value of 0.12 eV towards the HER, while Rh@8-CNB revealed a low overpotential value of 0.63 V towards the OER. The proposed SACs have catalytic activities that are competitive to the highly active Pt(III) catalyst and they are advantageous in their high atom percentage efficiency as SACs.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109139"},"PeriodicalIF":4.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenwei Dai , Qihui Cheng , Qing Miao , Zhen Yin , Ming Zhang , Jiajia Chen
{"title":"Experimental analysis and low-damage machining strategy for composite ultrasonic vibration-assisted grinding of silicon carbide based on DA-MLP-NSGA-II algorithm","authors":"Chenwei Dai , Qihui Cheng , Qing Miao , Zhen Yin , Ming Zhang , Jiajia Chen","doi":"10.1016/j.mssp.2024.109146","DOIUrl":"10.1016/j.mssp.2024.109146","url":null,"abstract":"<div><div>At present, because of the lack of ultrasonic composite vibration assisted grinding mechanism, neural network optimization algorithm (NNOA) is used to optimize the processing results. In NNOA, multi-layer perceptron (MLP) neural network model and non-dominated sorting genetic algorithm-II (NSGA-II) are very efficient and accurate methods. In this paper, based on the measurement and analysis of the specific ultrasonic vibration device, the CUVAG experiments on silicon carbide (SiC) ceramic were carried out to investigate the influence of processing parameters on the grinding forces, the ground surface roughness and morphology, and the subsurface damage. Then, the brittle-ductile removal behavior of hard-and-brittle materials could be revealed according to the above analysis. After that, MLP model and NSGA-II were utilized to predict and optimize the processing results in CUVAG. The results show that the grinding forces are basically constant, the surface quality deteriorates, and the subsurface damage increases with increased axial vibration amplitude and workpiece infeed speed, but all fluctuate with enlarged wheel speed, and turns at the inflection point of brittle-ductile transition with increased elliptic vibration amplitude. The fitting goodness <em>R</em><sup>2</sup> of the established MLP neural network prediction model is between 0.94 and 0.975, and the process parameters calculated by the NSGA-II optimization algorithm are verified. With optimized processing parameters, the grinding forces are reduced by about 13 %, the surface roughness is reduced to Ra0.037 μm (by 29 %), and the depth of subsurface damage is reduced by 68 %.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109146"},"PeriodicalIF":4.2,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ag2O-supported FePO4 heterojunctions: Facile fabrication and fast visible-light carbon dioxide photoreduction into methanol with superb recyclability","authors":"Gamal Hassan Sewify , Soliman I. El-Hout","doi":"10.1016/j.mssp.2024.109160","DOIUrl":"10.1016/j.mssp.2024.109160","url":null,"abstract":"<div><div>The conversion of carbon dioxide (CO<sub>2</sub>) into clean fuels using semiconductor materials represents a sustainable and environmentally advantageous approach to energy generation. Extensive research is underway to develop robust and enduring photocatalysts for this purpose. This research focused on the synthesis of visible-light-responsive 1.0–4.0 wt% Ag<sub>2</sub>O-decorated FePO<sub>4</sub> (FPO) nanocomposites using a surfactant-assisted sol-gel method and evaluated their ability to catalyze the photoconversion of CO<sub>2</sub> into methanol. The addition of trace amounts of Ag<sub>2</sub>O expanded their visible-light absorption range, improved charge isolation, and enhanced mobility of photoexcited charges. This resulted in a bandgap reduction from 3.14 eV in pure FPO to 1.98 eV. Additionally, the surface structure examination revealed the production of mesoporous nanocomposites with a surface area ranging from 103 to 119 m<sup>2</sup>/g. Furthermore, a controlled dosage of 3 % Ag<sub>2</sub>O-FPO at 1.6 g/L produced CH<sub>3</sub>OH with a yield of 1612 μM g<sup>−1</sup> after 9 h of illumination, approximately 2.2 times higher than the pure FPO. This stable and reusable heterojunction maintains 94 % of its initial performance after 5 cycles. This research highlights the potential of phosphates-based heterojunctions for producing sustainable fuels under visible illumination conditions.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109160"},"PeriodicalIF":4.2,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dani George , H.R. Chandan , R. Shwetharani , M. Faisal , Jahir Ahmed , Farid A. Harraz , R. Geetha Balakrishna
{"title":"Understanding graphyne; theoretical insights and its optoelectronic behaviour","authors":"Dani George , H.R. Chandan , R. Shwetharani , M. Faisal , Jahir Ahmed , Farid A. Harraz , R. Geetha Balakrishna","doi":"10.1016/j.mssp.2024.109113","DOIUrl":"10.1016/j.mssp.2024.109113","url":null,"abstract":"<div><div>Two-dimensional Graphynes (GYs) exhibit extraordinary properties, owing to the highly conjugated doubly and triply bonded carbon atoms in the hexagonal lattice. Recently, γ-GYs have attracted tremendous interest due to its exciting electrical and optical properties and it is necessary to comprehend these properties for future research in this field. This review focus on discussing the fundamental chemistry of the combination of <em>sp</em> and <em>sp</em><sup>2</sup> hybridization in GYs that contributes to its unique properties, particularly opto electrochemical properties of GYs. A detailed track record against a set of properties for developing efficient GYs based materials will help us look ahead in the right direction. The theoretical analysis of the electronic band structure of GYs, stability in relation to <em>sp</em> hybridization, experimental techniques used to tune their optical bandgap, and to improve mobility and carrier lifetimes, are covered in this review. The review then lists the merits of using GYs in various photo and electrochemical applications. Finally, current difficulties and future prospects for using these materials for the specified purpose are discussed.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109113"},"PeriodicalIF":4.2,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A room temperature ZnO:Ga NWs&NSs/MEMS H2S gas sensor","authors":"Chun-Wei Huang, Chia-Ying Wu, Ting-Jen Hsueh","doi":"10.1016/j.mssp.2024.109149","DOIUrl":"10.1016/j.mssp.2024.109149","url":null,"abstract":"<div><div>This study uses nanotechnology, MEMS technology and doping technology to produce a room temperature ZnO:Ga H<sub>2</sub>S gas sensor with a nanowires hybrid nanosheets (NWs&NSs) structure. ZnO:Ga NWs&NSs is fabricated by adding gallium nitrate hydrate (GNH) to an aqueous solution to grow ZnO nanowires (NWs). The results for SEM show that ZnO NWs grow on the sensing material but e non-IDE regions have a nanosheet structure. EDS results show that Ga element is almost doped in the ZnO nanosheets. XRD analysis shows that the diffraction peaks for the ZnO:Ga NWs&NSs are attributed to lanes of the Wurtzite hexagonal. In terms of the gas sensing characteristics of the ZnO:Ga NWs&NSs/MEMS sensor, it has a greater sensor response than a ZnO NWs/MEMS and a ZnO thin film/MEMS gas sensor at room temperature with a H<sub>2</sub>S concentration of 0.8 ppm. The average response time is 22.4 s and the recovery time is 16.8 s for a ZnO:Ga NWs&NSs/MEMS gas sensor that operates at room temperature with a 0.4 ppm H<sub>2</sub>S ambiance. The ZnO:Ga NWs&NSs/MEMS gas sensor is also less sensitive to CO, CO<sub>2</sub>, H<sub>2</sub> and SO<sub>2</sub>. These experimental results show the ZnO:Ga NWs&NSs/MEMS H<sub>2</sub>S gas sensor is stable, reproducible and selective.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109149"},"PeriodicalIF":4.2,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miloud Benchehima , Nadir Hassani , Kada Benchikh , Hamza Abid
{"title":"Thermodynamic stability and optoelectronic properties of rock salt MgSxO1-x ternary alloys through (TB-mBJ) approach: For ultra-violet detection","authors":"Miloud Benchehima , Nadir Hassani , Kada Benchikh , Hamza Abid","doi":"10.1016/j.mssp.2024.109136","DOIUrl":"10.1016/j.mssp.2024.109136","url":null,"abstract":"<div><div>In this work, we investigated the thermodynamic stability and optoelectronic properties of MgS<sub>x</sub>O<sub>1-x</sub> (0≤x ≤ 1) ternary alloys in rock salt phase. These properties have been carefully described using the full-potential linearized augmented plane wave (FP-LAPW) formalism within the framework of density functional theory (DFT). Structural properties and total energies of MgS<sub>x</sub>O<sub>1-x</sub> ternaries have been calculated using generalized gradient approximation of Wu and Cohen (WC-GGA) approach for different concentrations (x). It is found that the calculated lattice constant of MgS<sub>x</sub>O<sub>1-x</sub> ternaries increases with increasing sulfur (S) concentrations while its bulk modulus decreases. Based on the regular solution model, we have determined the thermodynamic stability of MgS<sub>x</sub>O<sub>1-x</sub>. In addition to (WC-GGA), we used the Becke-Johnson approach modified by Tran-Blaha (TB-mBJ). To explore the potential of MgS<sub>x</sub>O<sub>1-x</sub> ternary alloys in rock salt phase for optoelectronic applications, we have calculated and analyzed their optical properties in detail in the energy range of 0–50 eV. Our obtained results predict that MgS<sub>x</sub>O<sub>1-x</sub> ternary alloys can be effectively used in optical devices operating in the ultraviolet (UV) spectrum.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109136"},"PeriodicalIF":4.2,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaihong Hou , Zhengwei Fan , Yonggui Chen , Shufeng Zhang , Yashun Wang , Xun Chen
{"title":"Multi-crack spatial propagation evolution analysis of 3D-TSV under thermal-electric-mechanical coupling field","authors":"Kaihong Hou , Zhengwei Fan , Yonggui Chen , Shufeng Zhang , Yashun Wang , Xun Chen","doi":"10.1016/j.mssp.2024.109128","DOIUrl":"10.1016/j.mssp.2024.109128","url":null,"abstract":"<div><div>As an interconnected microstructure, Through-Silicon Via (TSV) play a vital role in three-dimension (3D) chip. With the improvement of interconnection density, the reliability problems origin from interface crack initiation and propagation become increasingly prominent. In this study, the effects of the crack type, crack propagation direction, current magnitude and direction on the spatial characteristic of crack propagation under thermal-electric-mechanical coupling field is deeply investigated based on 3D J-integral-based fracture mechanics method. Results shows that: 1) Crack J-integral is consistent with the variation of ambient temperature and positively correlated with the current magnitude; 2) When the current direction is same as crack propagation direction, electron holes will gradually accumulate at crack tip, which can accelerate the crack propagation rate; 3) Different cracks will present different morphological characteristics, the shell pattern cracks can be found at RDL-SiO<sub>2</sub> and Si-SiO<sub>2</sub> cracks, and the internal cracks TSV-Cu present irregular trapezoidal shape. Relevant result is hope to provide certain references for the reliability analysis and optimal design of TSV.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109128"},"PeriodicalIF":4.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronically tunable Z-scheme GaS/AlSb heterojunction and its optical properties","authors":"Xintong Lv, Lijun Luan, Liuyang Han, Yanyan Zhao, Guohai Li, Li Duan","doi":"10.1016/j.mssp.2024.109141","DOIUrl":"10.1016/j.mssp.2024.109141","url":null,"abstract":"<div><div>This work investigates the geometric structure, electronic and optical properties of the GaS/AlSb van der Waals heterojunction (vdwH) using first-principles density functional theory (DFT) calculations. The investigation reveals that the pristine GaS/AlSb heterojunction, featuring a 3.40 Å interlayer distance, exhibits the utmost structural stability. Furthermore, this junction displays a narrowed band gap in comparison to its constituent monolayers, thereby facilitating the efficient generation and excitation of photogenerated carriers. The heterojunction belongs to the Z-scheme heterojunction in Type-II, which is more conducive to the enhancement of the redox capability of the heterostructure. The GaS/AlSb heterojunction has a higher Ultraviolet Rays (UV) absorption coefficient, which is valuable for applications in the field of UV photodetectors. Upon the application of both an electric field and strain to the GaS/AlSb van der Waals heterostructure (vdwH), it is found the band gap size of the heterojunction, and the direction of electron transfer can be effectively regulated. The light absorption coefficient and absorption range of heterojunctions can be improved to some extent by applying external strains, which can effectively improve the optical performance of the heterojunction. This study can provide a theoretical basis for the application of GaS/AlSb vdwH in future optoelectronic devices.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109141"},"PeriodicalIF":4.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simin Liu , Lin Shang , Shufang Ma , Bocang Qiu , Zhi Yang , Haitao Feng , Junzhao Zhang , Ruisi Cheng , Bo Li , Bingshe Xu
{"title":"Investigation of the growth temperature of AlGaAs barrier layer on optical and crystal quality of InGaAs/AlGaAs multi-quantum wells and AlGaAs single layer grown by molecular beam epitaxy (MBE)","authors":"Simin Liu , Lin Shang , Shufang Ma , Bocang Qiu , Zhi Yang , Haitao Feng , Junzhao Zhang , Ruisi Cheng , Bo Li , Bingshe Xu","doi":"10.1016/j.mssp.2024.109140","DOIUrl":"10.1016/j.mssp.2024.109140","url":null,"abstract":"<div><div>The effect of growth temperature on the crystal quality and optical properties of InGaAs/AlGaAs multiple quantum wells (MQWs) with AlGaAs barriers was studied. The AlGaAs layers and InGaAs/AlGaAs MQWs were grown using molecular beam epitaxy (MBE). High-resolution X-ray diffraction (HRXRD) and photoluminescence (PL) were employed to assess the interface smoothness and optical properties of the materials. HRXRD analysis reveals that increasing barrier growth temperature can lead to the degradation of interface quality, as well as the decrease in the indium content and well thickness in InGaAs/AlGaAs MQWs. But the PL integral signal which is the integration of the PL spectral intensity, and represents the normalized photon number produced by the PL process increase instead. The AlGaAs single layer analysis reveals increasing temperature can increase its crystal quality and interfaces smoothness, leading to enhanced radiation recombination efficiency.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109140"},"PeriodicalIF":4.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of nickel-tetramine phthalocyanine-sugarcane pith graphene oxide composites for the efficient photocatalytic degradation of aniline blue and eosin B","authors":"Luo Shaohua , Tu Xinman , Li Jun","doi":"10.1016/j.mssp.2024.109142","DOIUrl":"10.1016/j.mssp.2024.109142","url":null,"abstract":"<div><div>In this study, sugarcane pith was used to prepare graphene oxide (GO), and sugarcane pith graphene oxide (SPGO) was bonded to nickel-tetramine phthalocyanine (NiTAPc) to synthesize NiTAPc-SPGO. The NiTAPc-SPGO photocatalytic performance was evaluated by measuring aniline blue (AB) and eosin B (EB) photodegradation under xenon lamp irradiation. The effect of reaction conditions, such as dark storage conditions, with or without H<sub>2</sub>O<sub>2</sub>, on the photocatalytic degradation of these dyes was investigated. The materials were characterized using ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. Furthermore, a suitable mechanism for the NiTAPc-SPGO-mediated photocatalytic degradation of the dyes was proposed. The results showed that NiTAPc-SPGO had a higher degradation ability for EB (93.32 %) and for AB (84.79 %) in the presence of 1.5 mL H<sub>2</sub>O<sub>2</sub>. H<sub>2</sub>O<sub>2</sub> and NiTAPc-SPGO showed synergistic effects, which accelerate the dye's degradation degree and rate. Under xenon lamp irradiation, the NiTAPc in NiTAPc-SPGO turned into the excited state, which disintegrated into hole–electron pairs. The NiTAPc-SPGO composite material showed lower circular impedance and resistivity and enhanced conductivity and ability to separate light-generated carriers than SPGO.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109142"},"PeriodicalIF":4.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}