应变裁剪法控制扩展波长InGaAs光电探测器材料的晶圆弯曲

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bowen Liu , Yi Gu , Lihao Yin , Huijuan Huang , Kang Li , Liuyan Fan , Hong Zhou , Pingping Chen , Chunlei Yu , Tao Li , Xiumei Shao , Xue Li , Haimei Gong
{"title":"应变裁剪法控制扩展波长InGaAs光电探测器材料的晶圆弯曲","authors":"Bowen Liu ,&nbsp;Yi Gu ,&nbsp;Lihao Yin ,&nbsp;Huijuan Huang ,&nbsp;Kang Li ,&nbsp;Liuyan Fan ,&nbsp;Hong Zhou ,&nbsp;Pingping Chen ,&nbsp;Chunlei Yu ,&nbsp;Tao Li ,&nbsp;Xiumei Shao ,&nbsp;Xue Li ,&nbsp;Haimei Gong","doi":"10.1016/j.mssp.2025.109698","DOIUrl":null,"url":null,"abstract":"<div><div>The wafer bow caused by lattice mismatch between metamorphic InGaAs epitaxial layer and InP substrate has become one of the key factors limiting the large-scale development of extended wavelength InGaAs focal plane array photodetectors. By introducing tensile strain in InAlAs buffer layers and InAlAs cap layer to compensate the compressive strain caused by lattice mismatch, the wafer bow was decreased from 55.9 μm to 22.2 μm. The influence of strain compensation structure on the anisotropy of metamorphic InGaAs materials was investigated by stress distribution, surface morphology, and PL uniformity. XRD and PL characterizations indicate that small tensile strain in InAlAs buffer layers did not reduce the quality of metamorphic InGaAs epitaxial material. This study shows that strain compensation is an effective method to control wafer bow and decrease anisotropy of metamorphic InGaAs materials grown on InP substrate.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"197 ","pages":"Article 109698"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wafer bow control of extended wavelength InGaAs photodetector materials by strain tailoring\",\"authors\":\"Bowen Liu ,&nbsp;Yi Gu ,&nbsp;Lihao Yin ,&nbsp;Huijuan Huang ,&nbsp;Kang Li ,&nbsp;Liuyan Fan ,&nbsp;Hong Zhou ,&nbsp;Pingping Chen ,&nbsp;Chunlei Yu ,&nbsp;Tao Li ,&nbsp;Xiumei Shao ,&nbsp;Xue Li ,&nbsp;Haimei Gong\",\"doi\":\"10.1016/j.mssp.2025.109698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The wafer bow caused by lattice mismatch between metamorphic InGaAs epitaxial layer and InP substrate has become one of the key factors limiting the large-scale development of extended wavelength InGaAs focal plane array photodetectors. By introducing tensile strain in InAlAs buffer layers and InAlAs cap layer to compensate the compressive strain caused by lattice mismatch, the wafer bow was decreased from 55.9 μm to 22.2 μm. The influence of strain compensation structure on the anisotropy of metamorphic InGaAs materials was investigated by stress distribution, surface morphology, and PL uniformity. XRD and PL characterizations indicate that small tensile strain in InAlAs buffer layers did not reduce the quality of metamorphic InGaAs epitaxial material. This study shows that strain compensation is an effective method to control wafer bow and decrease anisotropy of metamorphic InGaAs materials grown on InP substrate.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"197 \",\"pages\":\"Article 109698\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125004354\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125004354","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

变质InGaAs外延层与InP衬底晶格失配导致的晶圆弯曲已成为限制扩展波长InGaAs焦平面阵列光电探测器大规模发展的关键因素之一。通过在InAlAs缓冲层和InAlAs帽层中引入拉伸应变来补偿晶格失配引起的压缩应变,晶圆弯曲从55.9 μm减小到22.2 μm。从应力分布、表面形貌和PL均匀性等方面研究了应变补偿结构对变质InGaAs材料各向异性的影响。XRD和PL表征表明,InAlAs缓冲层中较小的拉伸应变并未降低变质InGaAs外延材料的质量。研究表明,应变补偿是控制晶圆弯曲和降低在InP衬底上生长的变质InGaAs材料各向异性的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wafer bow control of extended wavelength InGaAs photodetector materials by strain tailoring
The wafer bow caused by lattice mismatch between metamorphic InGaAs epitaxial layer and InP substrate has become one of the key factors limiting the large-scale development of extended wavelength InGaAs focal plane array photodetectors. By introducing tensile strain in InAlAs buffer layers and InAlAs cap layer to compensate the compressive strain caused by lattice mismatch, the wafer bow was decreased from 55.9 μm to 22.2 μm. The influence of strain compensation structure on the anisotropy of metamorphic InGaAs materials was investigated by stress distribution, surface morphology, and PL uniformity. XRD and PL characterizations indicate that small tensile strain in InAlAs buffer layers did not reduce the quality of metamorphic InGaAs epitaxial material. This study shows that strain compensation is an effective method to control wafer bow and decrease anisotropy of metamorphic InGaAs materials grown on InP substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信