Rodrigo Berté, Thomas Possmayer, Andreas Tittl, Leonardo de S. Menezes, Stefan A. Maier
{"title":"All-optical permittivity-asymmetric quasi-bound states in the continuum","authors":"Rodrigo Berté, Thomas Possmayer, Andreas Tittl, Leonardo de S. Menezes, Stefan A. Maier","doi":"10.1038/s41377-025-01843-9","DOIUrl":"https://doi.org/10.1038/s41377-025-01843-9","url":null,"abstract":"<p>Resonances are usually associated with finite systems—the vibrations of clamped strings in a guitar or the optical modes in a cavity defined by mirrors. In optics, resonances may be induced in infinite continuous media via periodic modulations of their optical properties. Here we demonstrate that periodic modulations of the permittivity of a featureless thin film can also act as a symmetry-breaking mechanism, allowing the excitation of photonic <i>quasi</i>-bound states in the continuum (<i>q</i>BICs). By interfering two ultrashort laser pulses in the unbounded film, transient resonances can be tailored through different parameters of the pump beams. We show that the system offers resonances tunable in wavelength and quality-factor, and spectrally selective enhancement of third-harmonic generation. Due to a fast decay of the permittivity asymmetry, we observe ultrafast dynamics, enabling time-selective near-field enhancement with picosecond precision. Optically induced permittivity asymmetries may be exploited in on-demand weak to ultrastrong light-matter interaction regimes and light manipulation at dynamically chosen wavelengths in lithography-free metasurfaces.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"116 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143915304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guoce Yang, Mengyun Wang, June Sang Lee, Nikolaos Farmakidis, Joe Shields, Carlota Ruiz de Galarreta, Stuart Kendall, Jacopo Bertolotti, Andriy Moskalenko, Kairan Huang, Andrea Alù, C. David Wright, Harish Bhaskaran
{"title":"Nonlocal phase-change metaoptics for reconfigurable nonvolatile image processing","authors":"Guoce Yang, Mengyun Wang, June Sang Lee, Nikolaos Farmakidis, Joe Shields, Carlota Ruiz de Galarreta, Stuart Kendall, Jacopo Bertolotti, Andriy Moskalenko, Kairan Huang, Andrea Alù, C. David Wright, Harish Bhaskaran","doi":"10.1038/s41377-025-01841-x","DOIUrl":"https://doi.org/10.1038/s41377-025-01841-x","url":null,"abstract":"<p>The next generation of smart imaging and vision systems will require compact and tunable optical computing hardware to perform high-speed and low-power image processing. These requirements are driving the development of computing metasurfaces to realize efficient front-end analog optical pre-processors, especially for edge detection capability. Yet, there is still a lack of reconfigurable or programmable schemes, which may drastically enhance the impact of these devices at the system level. Here, we propose and experimentally demonstrate a reconfigurable flat optical image processor using low-loss phase-change nonlocal metasurfaces. The metasurface is configured to realize different transfer functions in spatial frequency space, when transitioning the phase-change material between its amorphous and crystalline phases. This enables edge detection and bright field imaging modes on the same device. The metasurface is compatible with a large numerical aperture of ~0.5, making it suitable for high resolution coherent optical imaging microscopy. The concept of phase-change reconfigurable nonlocal metasurfaces may enable emerging applications of artificial intelligence-assisted imaging and vision devices with switchable multitasking.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143909723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient generation of Bessel-Gauss attosecond pulse trains via nonadiabatic phase-matched high-order harmonics","authors":"Mingxuan Li, Xiangyu Tang, Huiyong Wang, Jialong Li, Wentao Wang, Jiaao Cai, Jieda Zhang, Xinyue San, Xinning Zhao, Pan Ma, Sizuo Luo, Cheng Jin, Dajun Ding","doi":"10.1038/s41377-025-01845-7","DOIUrl":"https://doi.org/10.1038/s41377-025-01845-7","url":null,"abstract":"<p>Generating Bessel-Gauss beams in the extreme ultraviolet (EUV) with attosecond pulse durations poses a significant challenge due to the limitations of conventional transmission optical components. Here, we propose a novel approach to produce such beams by inducing an annular EUV source through high-order harmonic generation (HHG) under nonadiabatic phase-matching conditions. The resulting light pulse maintains temporal coherence and manifests attosecond pulse trains as confirmed by the reconstruction of attosecond beating by interference of two-photon transitions (RABBIT) measurements. Macroscopic HHG calculations reproduce the measured spatiotemporal structures, demonstrating the plasma-induced spatial modulation on the formation of an annular source. Propagation simulations further confirm the feasibility of this approach for generating attosecond Bessel-Gauss beams, presenting exciting prospects for various applications in EUV photonics and attosecond science.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143909725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MINFLUX nanoscopy enhanced with high-order vortex beams","authors":"Xiao-Jie Tan, Zhiwei Huang","doi":"10.1038/s41377-025-01822-0","DOIUrl":"https://doi.org/10.1038/s41377-025-01822-0","url":null,"abstract":"<p>Minimal photon fluxes (MINFLUX) nanoscopy has emerged as a transformative advancement in superresolution imaging, enabling unprecedented nanoscale observations across diverse biological scenarios. In this work, we propose, for the first time, that employing high-order vortex beams can significantly enhance the performance of MINFLUX, surpassing the limitations of the conventional MINFLUX using the first-order vortex beam. Our theoretical analysis indicates that, for standard MINFLUX, high-order vortex beams can improve the maximum localization precision by a factor corresponding to their order, which can approach a sub-nanometer scale under optimal conditions, and for raster scan MINFLUX, high-order vortex beams allow for a wider field of view while maintaining enhanced precision. These findings underscore the potential of high-order vortex beams to elevate the performance of MINFLUX, paving the way towards ultra-high resolution imaging for a broad range of applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"96 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143909722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Vogliardi, Gianluca Ruffato, Daniele Bonaldo, Simone Dal Zilio, Filippo Romanato
{"title":"Azimuthally-variant perfect vector beams for the control of arbitrary phase and polarization ring patterns","authors":"Andrea Vogliardi, Gianluca Ruffato, Daniele Bonaldo, Simone Dal Zilio, Filippo Romanato","doi":"10.1038/s41377-025-01859-1","DOIUrl":"https://doi.org/10.1038/s41377-025-01859-1","url":null,"abstract":"<p>Perfect vortices, recognized for their distinct ring profile that remains independent of the topological charge, present significant challenges in generation due to the precise control needed over both phase and polarization. In this work, we introduce and validate a new approach for generating these beams, allowing the selection of different azimuthally-variant phase gradients and vector states, thereby enabling full control over the phase and polarization patterns of perfect vortices. Using dual-functional silicon metaoptics, we achieve the compact generation of a novel class of perfect vortices, termed azimuthally-variant perfect vector beams. The optical characterization of the generated beams, performed through a filtering method, confirms their intrinsic azimuthally-variant vectorial nature. These beams exhibit unique properties that promise valuable applications in optical tweezing, the manipulation of low-refractive-index particles, the trapping of cold atoms, and high-capacity communications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143910266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A chip-integrated comb-based microwave oscillator","authors":"Wei Sun, Zhiyang Chen, Linze Li, Chen Shen, Kunpeng Yu, Shichang Li, Jinbao Long, Huamin Zheng, Luyu Wang, Tianyu Long, Qiushi Chen, Zhouze Zhang, Baoqi Shi, Lan Gao, Yi-Han Luo, Baile Chen, Junqiu Liu","doi":"10.1038/s41377-025-01795-0","DOIUrl":"https://doi.org/10.1038/s41377-025-01795-0","url":null,"abstract":"<p>Low-noise microwave oscillators are cornerstones for wireless communication, radar and clocks. The employment and optimization of optical frequency combs have enabled photonic microwave synthesizers with unrivalled noise performance and bandwidth breaking the bottleneck of those electronic counterparts. Emerging interest is to use chip-based Kerr frequency combs, namely microcombs. Today microcombs built on photonic integrated circuits feature small size, weight and power consumption, and can be manufactured to oscillate at any frequency ranging from microwave to millimeter-wave band. A monolithic microcomb-based microwave oscillator requires integration of lasers, photodetectors and nonlinear microresonators on a common substrate, which however has still remained elusive. Here, we demonstrate the first, fully hybrid-integrated, microcomb-based microwave oscillator at 10.7 GHz. The chip device, powered by a customized microelectronic circuit, leverages hybrid integration of a high-power DFB laser, a silicon nitride microresonator of a quality factor exceeding 25 × 10<sup>6</sup>, and a high-speed photodetector chip of 110 GHz bandwidth (3 dB) and 0.3 A/W responsivity. Each component represents the state of the art of its own class, yet also allows large-volume manufacturing with low cost using established CMOS and III-V foundries. The hybrid chip outputs an ultralow-noise laser of 6.9 Hz intrinsic linewidth, a coherent microcomb of 10.7 GHz repetition rate, and a 10.7 GHz microwave carrier of 6.3 mHz linewidth – all the three functions in one entity occupying a footprint of only 76 mm<sup>2</sup>. Furthermore, harnessing the nonlinear laser-microresonator interaction, we observe and maneuver a unique noise-quenching dynamics within discrete microcomb states, which offers immunity to laser current noise, suppression of microwave phase noise by more than 20 dB, and improvement of microwave power by up to 10 dB. The ultimate microwave phase noise reaches −75/−105/−130 dBc/Hz at 1/10/100 kHz Fourier offset frequency. Our results can reinvigorate our information society for communication, sensing, imaging, timing and precision measurement.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143889736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiyue Sun, Shunda Qiao, Ying He, Xiaorong Sun, Yufei Ma
{"title":"Parts-per-quadrillion level gas molecule detection: CO-LITES sensing","authors":"Haiyue Sun, Shunda Qiao, Ying He, Xiaorong Sun, Yufei Ma","doi":"10.1038/s41377-025-01864-4","DOIUrl":"https://doi.org/10.1038/s41377-025-01864-4","url":null,"abstract":"<p>Highly sensitive gas detection plays a crucial role in advanced scientific and technological fields. This paper presents a parts-per-quadrillion (ppq) level ultra-highly sensitive light-induced thermoelectric spectroscopy (LITES) sensor for the first time. The artificial fish swarm algorithm auto-designed multi-pass cell (MPC) with double helix pattern, and the polymer modified round-head quartz tuning fork (QTF) with low-resonant frequency (<i>f</i><sub>0</sub>) were adopted to improve the gas absorption and QTF’s detection ability. The obtained MPC, with a long optical path length (OPL) of 25.8 m and a small volume of 165.8 ml, is beneficial for increasing gas absorption while keeping the sensor compact. The novel QTF was structurally optimized to obtain low <i>f</i><sub>0</sub> (~9.5 kHz) and modified by polydimethylsiloxane (PDMS) to reduce heat diffusion and enhance vibration amplitude. A strong absorption line of carbon monoxide (CO) located in the mid-infrared region (4.59 μm) was chosen as the target line. The signal-to-noise ratio (SNR) of CO-LITES sensor based on the novel QTF was improved by 10.59 times, reaching the highest level when compared to the commercial QTF. The corresponding minimum detection limit (MDL) was calculated to be 23 ppt. When the integration time of the sensor system was increased to 500 s, the MDL could be improved to 920.7 ppq. Compared to the reported spectroscopy techniques for CO gas detection, the LITES sensor in this study offers an excellent result in terms of detection sensitivity.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"93 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143889748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingzhi Lin, Feng Xing, Liwei Su, Kekuan Wang, Yulan Liu, Diming Zhang, Xusan Yang, Huijun Tan, Zhijing Zhu, Depeng Wang
{"title":"Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution","authors":"Bingzhi Lin, Feng Xing, Liwei Su, Kekuan Wang, Yulan Liu, Diming Zhang, Xusan Yang, Huijun Tan, Zhijing Zhu, Depeng Wang","doi":"10.1038/s41377-025-01842-w","DOIUrl":"https://doi.org/10.1038/s41377-025-01842-w","url":null,"abstract":"<p>Light-field imaging has wide applications in various domains, including microscale life science imaging, mesoscale neuroimaging, and macroscale fluid dynamics imaging. The development of deep learning-based reconstruction methods has greatly facilitated high-resolution light-field image processing, however, current deep learning-based light-field reconstruction methods have predominantly concentrated on the microscale. Considering the multiscale imaging capacity of light-field technique, a network that can work over variant scales of light-field image reconstruction will significantly benefit the development of volumetric imaging. Unfortunately, to our knowledge, no one has reported a universal high-resolution light-field image reconstruction algorithm that is compatible with microscale, mesoscale, and macroscale. To fill this gap, we present a real-time and universal network (RTU-Net) to reconstruct high-resolution light-field images at any scale. RTU-Net, as the first network that works over multiscale light-field image reconstruction, employs an adaptive loss function based on generative adversarial theory and consequently exhibits strong generalization capability. We comprehensively assessed the performance of RTU-Net through the reconstruction of multiscale light-field images, including microscale tubulin and mitochondrion dataset, mesoscale synthetic mouse neuro dataset, and macroscale light-field particle imaging velocimetry dataset. The results indicated that RTU-Net has achieved real-time and high-resolution light-field image reconstruction for volume sizes ranging from 300 μm × 300 μm × 12 μm to 25 mm × 25 mm × 25 mm, and demonstrated higher resolution when compared with recently reported light-field reconstruction networks. The high-resolution, strong robustness, high efficiency, and especially the general applicability of RTU-Net will significantly deepen our insight into high-resolution and volumetric imaging.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143884805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Light in heart, forge ahead—Professor Rui Wang’s adventures in perovskite solar cell frontiers","authors":"Ji Wang","doi":"10.1038/s41377-025-01863-5","DOIUrl":"https://doi.org/10.1038/s41377-025-01863-5","url":null,"abstract":"<p>As depicted in ancient Greek mythology, Prometheus couldn’t bear the sight of humanity struggling in the darkness, crafted a long reed, and took the risk of approaching the sun to steal fire. He fearlessly brought this light to the world, defying what Zeus had ordered the gods not to do. His brave act ushered in the dawn of civilization for mankind. In this issue of “Light People”, Professor Rui Wang is invited to share stories about his adventures in improving perovskite solar cells for the full utilization of sunlight in daily lives, much like Prometheus bringing the gift of light to humanity. Perovskite solar cells hold great potential for both civilian applications and commercial purposes, such as rooftop solar panels, solar chargers, and solar-powered vehicles.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanophotonic sensing and label-free imaging of extracellular vesicles","authors":"Isabel Barth, Hakho Lee","doi":"10.1038/s41377-025-01866-2","DOIUrl":"https://doi.org/10.1038/s41377-025-01866-2","url":null,"abstract":"<p>This review examines imaging-based nanophotonic biosensing and interferometric label-free imaging, with a particular focus on vesicle detection. It specifically compares dielectric and plasmonic metasurfaces for label-free protein and extracellular vesicle detection, highlighting their respective advantages and limitations. Key topics include: (i) refractometric sensing principles using resonant dielectric and plasmonic surfaces; (ii) state-of-the-art developments in both plasmonic and dielectric nanostructured resonant surfaces; (iii) a detailed comparison of resonance characteristics, including amplitude, quality factor, and evanescent field enhancement; and (iv) the relationship between sensitivity, near-field enhancement, and analyte overlap in different sensing platforms. The review provides insights into the fundamental differences between plasmonic and dielectric platforms, discussing their fabrication, integration potential, and suitability for various analyte sizes. It aims to offer a unified, application-oriented perspective on the potential of these resonant surfaces for biosensing and imaging, aiming at addressing topics of interest for both photonics experts and potential users of these technologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}