Light-Science & Applications最新文献

筛选
英文 中文
Generation of squeezed vacuum state in the millihertz frequency band 在毫赫兹频段产生挤压真空状态
Light-Science & Applications Pub Date : 2024-10-17 DOI: 10.1038/s41377-024-01606-y
Li Gao, Li-ang Zheng, Bo Lu, Shaoping Shi, Long Tian, Yaohui Zheng
{"title":"Generation of squeezed vacuum state in the millihertz frequency band","authors":"Li Gao, Li-ang Zheng, Bo Lu, Shaoping Shi, Long Tian, Yaohui Zheng","doi":"10.1038/s41377-024-01606-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01606-y","url":null,"abstract":"<p>The detection of gravitational waves has ushered in a new era of observing the universe. Quantum resource advantages offer significant enhancements to the sensitivity of gravitational wave observatories. While squeezed states for ground-based gravitational wave detection have received marked attention, the generation of squeezed states suitable for mid-to-low-frequency detection has remained unexplored. To address the gap in squeezed state optical fields at ultra-low frequencies, we report on the first direct observation of a squeezed vacuum field until Fourier frequency of 4 millihertz with the quantum noise reduction of up to 8.0 dB, by the employment of a multiple noise suppression scheme. Our work provides quantum resources for future gravitational wave observatories, facilitating the development of quantum precision measurement.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tandem light-emitting technology accelerates the commercial application of perovskite LEDs 串联发光技术加速了过氧化物发光二极管的商业应用
Light-Science & Applications Pub Date : 2024-10-16 DOI: 10.1038/s41377-024-01624-w
Xiang Zhang, Jiajun Luo, Enguo Chen, Abd. Rashid bin Mohd Yusoff
{"title":"Tandem light-emitting technology accelerates the commercial application of perovskite LEDs","authors":"Xiang Zhang, Jiajun Luo, Enguo Chen, Abd. Rashid bin Mohd Yusoff","doi":"10.1038/s41377-024-01624-w","DOIUrl":"https://doi.org/10.1038/s41377-024-01624-w","url":null,"abstract":"<p>Hybrid tandem perovskite-organic LED has been developed to achieve high external quantum efficiency, narrow linewidth, and extended device lifespan, which shows great promise for future perovskite-EL-based commercial applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous-variable quantum passive optical network 连续可变量子无源光网络
Light-Science & Applications Pub Date : 2024-10-16 DOI: 10.1038/s41377-024-01633-9
Adnan A. E. Hajomer, Ivan Derkach, Radim Filip, Ulrik L. Andersen, Vladyslav C. Usenko, Tobias Gehring
{"title":"Continuous-variable quantum passive optical network","authors":"Adnan A. E. Hajomer, Ivan Derkach, Radim Filip, Ulrik L. Andersen, Vladyslav C. Usenko, Tobias Gehring","doi":"10.1038/s41377-024-01633-9","DOIUrl":"https://doi.org/10.1038/s41377-024-01633-9","url":null,"abstract":"<p>To establish a scalable and secure quantum network, a critical milestone is advancing from basic point-to-point quantum key distribution (QKD) systems to the development of inherently multi-user protocols designed to maximize network capacity. Here, we propose a quantum passive optical network (QPON) protocol based on continuous-variable (CV) systems, particularly the quadrature of the coherent state, which enables deterministic, simultaneous, and high-rate secret key generation among all network users. We implement two protocols with different trust levels assigned to the network users and experimentally demonstrate key generation in a quantum access network with 8 users, each with an 11 km span of access link. Depending on the trust assumptions about the users, we reach 1.5 and 2.1 Mbits/s of total network key generation (or 0.4 and 1.0 Mbits/s with finite-size channels estimation). Demonstrating the potential to expand the network’s capacity to accommodate tens of users at a high rate, our CV-QPON protocols open up new possibilities in establishing low-cost, high-rate, and scalable secure quantum access networks serving as a stepping stone towards a quantum internet.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
InGaP χ(2) integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation 用于宽带、超高效非线性转换和纠缠光子生成的 InGaP χ(2) 集成光子学平台
Light-Science & Applications Pub Date : 2024-10-15 DOI: 10.1038/s41377-024-01653-5
Joshua Akin, Yunlei Zhao, Yuvraj Misra, A. K. M. Naziul Haque, Kejie Fang
{"title":"InGaP χ(2) integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation","authors":"Joshua Akin, Yunlei Zhao, Yuvraj Misra, A. K. M. Naziul Haque, Kejie Fang","doi":"10.1038/s41377-024-01653-5","DOIUrl":"https://doi.org/10.1038/s41377-024-01653-5","url":null,"abstract":"<p>Nonlinear optics plays an important role in many areas of science and technology. The advance of nonlinear optics is empowered by the discovery and utilization of materials with growing optical nonlinearity. Here we demonstrate an indium gallium phosphide (InGaP) integrated photonics platform for broadband, ultra-efficient second-order nonlinear optics. The InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of 128, 000%/W/cm<sup>2</sup> at 1.55 <i>μ</i>m pump wavelength, nearly two orders of magnitude higher than the state of the art in the telecommunication C band. Further, we realize an ultra-bright, broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band. The InGaP entangled photon source shows high coincidence-to-accidental counts ratio CAR &gt; 10<sup>4</sup> and two-photon interference visibility &gt; 98%. The InGaP second-order nonlinear photonics platform will have wide-ranging implications for non-classical light generation, optical signal processing, and quantum networking.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly DUV to NIR-II responsive broadband quantum dots heterojunction photodetectors by integrating quantum cutting luminescent concentrators 通过集成量子切割发光聚光器实现高紫外至近红外-II 波段响应的宽带量子点异质结光电探测器
Light-Science & Applications Pub Date : 2024-10-15 DOI: 10.1038/s41377-024-01604-0
Nan Ding, Wen Xu, Hailong Liu, Yuhan Jing, Zewen Wang, Yanan Ji, Jinlei Wu, Long Shao, Ge Zhu, Bin Dong
{"title":"Highly DUV to NIR-II responsive broadband quantum dots heterojunction photodetectors by integrating quantum cutting luminescent concentrators","authors":"Nan Ding, Wen Xu, Hailong Liu, Yuhan Jing, Zewen Wang, Yanan Ji, Jinlei Wu, Long Shao, Ge Zhu, Bin Dong","doi":"10.1038/s41377-024-01604-0","DOIUrl":"https://doi.org/10.1038/s41377-024-01604-0","url":null,"abstract":"<p>Low-cost, high-performance, and uncooled broadband photodetectors (PDs) have potential applications in optical communication etc., but it still remains a huge challenge to realize deep UV (DUV) to the second near-infrared (NIR-II) detection for a single broadband PD. Herein, a single PD affording broadband spectral response from 200 to 1700 nm is achieved with a vertical configuration based on quantum dots (QDs) heterojunction and quantum cutting luminescent concentrators (QC–LC). A broadband quantum dots heterojunction as absorption layer was designed by integrating CsPbI<sub>3</sub>:Ho<sup>3+</sup> perovskite quantum dots (PQDs) and PbS QDs to realize the spectral response from 400 to 1700 nm. The QC–LC by employing CsPbCl<sub>3</sub>:Cr<sup>3+</sup>, Ce<sup>3+</sup>, Yb<sup>3+</sup>, Er<sup>3+</sup> PQDs as luminescent conversion layer to collect and concentrate photon energy for boosting the DUV–UV (200–400 nm) photons response of PDs by waveguide effect. Such broadband PD displays good stability, and outstanding sensitivity with the detectivity of 3.19 × 10<sup>12</sup> Jones at 260 nm, 1.05 × 10<sup>13</sup> Jones at 460 nm and 2.23 × 10<sup>12</sup> Jones at 1550 nm, respectively. The findings provide a new strategy to construct broadband detector, offering more opportunities in future optoelectronic devices.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative phase microscopies: accuracy comparison 定量相显微镜:精确度比较
Light-Science & Applications Pub Date : 2024-10-11 DOI: 10.1038/s41377-024-01619-7
Patrick C. Chaumet, Pierre Bon, Guillaume Maire, Anne Sentenac, Guillaume Baffou
{"title":"Quantitative phase microscopies: accuracy comparison","authors":"Patrick C. Chaumet, Pierre Bon, Guillaume Maire, Anne Sentenac, Guillaume Baffou","doi":"10.1038/s41377-024-01619-7","DOIUrl":"https://doi.org/10.1038/s41377-024-01619-7","url":null,"abstract":"<p>Quantitative phase microscopies (QPMs) play a pivotal role in bio-imaging, offering unique insights that complement fluorescence imaging. They provide essential data on mass distribution and transport, inaccessible to fluorescence techniques. Additionally, QPMs are label-free, eliminating concerns of photobleaching and phototoxicity. However, navigating through the array of available QPM techniques can be complex, making it challenging to select the most suitable one for a particular application. This tutorial review presents a thorough comparison of the main QPM techniques, focusing on their accuracy in terms of measurement precision and trueness. We focus on 8 techniques, namely digital holographic microscopy (DHM), cross-grating wavefront microscopy (CGM), which is based on QLSI (quadriwave lateral shearing interferometry), diffraction phase microscopy (DPM), differential phase-contrast (DPC) microscopy, phase-shifting interferometry (PSI) imaging, Fourier phase microscopy (FPM), spatial light interference microscopy (SLIM), and transport-of-intensity equation (TIE) imaging. For this purpose, we used a home-made numerical toolbox based on discrete dipole approximation (IF-DDA). This toolbox is designed to compute the electromagnetic field at the sample plane of a microscope, irrespective of the object’s complexity or the illumination conditions. We upgraded this toolbox to enable it to model any type of QPM, and to take into account shot noise. In a nutshell, the results show that DHM and PSI are inherently free from artefacts and rather suffer from coherent noise; In CGM, DPC, DPM and TIE, there is a trade-off between precision and trueness, which can be balanced by varying one experimental parameter; FPM and SLIM suffer from inherent artefacts that cannot be discarded experimentally in most cases, making the techniques not quantitative especially for large objects covering a large part of the field of view, such as eukaryotic cells.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light People: Prof. Daoxin Dai, Dr. Patrick Lo, and Prof. Yikai Su—innovators in silicon photonics 光人:硅光子学领域的创新者:戴道新教授、Patrick Lo 博士和苏义凯教授
Light-Science & Applications Pub Date : 2024-10-11 DOI: 10.1038/s41377-024-01650-8
Yating Wan, Chenzi Guo
{"title":"Light People: Prof. Daoxin Dai, Dr. Patrick Lo, and Prof. Yikai Su—innovators in silicon photonics","authors":"Yating Wan, Chenzi Guo","doi":"10.1038/s41377-024-01650-8","DOIUrl":"https://doi.org/10.1038/s41377-024-01650-8","url":null,"abstract":"<p>In this edition of <i>Light People</i>, we are excited to feature Prof. Daoxin Dai (Zhejiang University), Prof. Yikai Su (Shanghai Jiao Tong University), and Dr. Patrick Lo (Advanced Micro Foundry Pte Ltd, Singapore), three prominent researchers shaping the future of silicon photonics. Their collaborative work addresses critical issues in silicon photonics, including reducing propagation losses, enlarging the functionalities and enhancing building blocks, integrating efficient laser sources, expanding applications, and pushing the boundaries of optical and electronic integration. Through this interview, we delve into their academic journeys, challenges, and future visions, offering insights into the ongoing evolution of silicon photonics and its potential to transform industries. For a deeper exploration of their experiences and advice, the full interview is available in the Supplementary material.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excitation-wavelength-dependent persistent luminescence from single-component nonstoichiometric CaGaxO4:Bi for dynamic anti-counterfeiting 用于动态防伪的单组分非全度 CaGaxO4:Bi 发出的随激发波长变化的持续发光
Light-Science & Applications Pub Date : 2024-10-10 DOI: 10.1038/s41377-024-01635-7
Bo-Mei Liu, Yue Lin, Yingchun Liu, Bibo Lou, Chong-Geng Ma, Hui Zhang, Jing Wang
{"title":"Excitation-wavelength-dependent persistent luminescence from single-component nonstoichiometric CaGaxO4:Bi for dynamic anti-counterfeiting","authors":"Bo-Mei Liu, Yue Lin, Yingchun Liu, Bibo Lou, Chong-Geng Ma, Hui Zhang, Jing Wang","doi":"10.1038/s41377-024-01635-7","DOIUrl":"https://doi.org/10.1038/s41377-024-01635-7","url":null,"abstract":"<p>Materials capable of dynamic persistent luminescence (PersL) within the visible spectrum are highly sought after for applications in display, biosensing, and information security. However, PersL materials with eye-detectable and excitation-wavelength-dependent characteristics are rarely achieved. Herein, a nonstoichiometric compound CaGa<sub>x</sub>O<sub>4</sub>:Bi (<i>x</i> &lt; 2) is present, which demonstrates ultra-long, color-tunable PersL. The persistent emission wavelength can be tuned by varying the excitation wavelength, enabling dynamic color modulation from the green to the orange region within the visible spectrum. Theoretical calculations, in conjunction with experimental observations, are utilized to elucidate the thermodynamic charge transitions of various defect states, thereby providing insights into the relationship between Bi<sup>3+</sup> emitters, traps, and multicolored PersL. Furthermore, the utility of color-tunable PersL materials and flexible devices is showcased for use in visual sensing of invisible ultraviolet light, multicolor display, information encryption, and anti-counterfeiting. These discoveries create new opportunities to develop smart photoelectric materials with dynamically controlled PersL for various applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-high brightness Micro-LEDs with wafer-scale uniform GaN-on-silicon epilayers 采用晶圆级均匀硅基氮化镓外延层的超高亮度 Micro-LED
Light-Science & Applications Pub Date : 2024-10-09 DOI: 10.1038/s41377-024-01639-3
Haifeng Wu, Xiao Lin, Qin Shuai, Youliang Zhu, Yi Fu, Xiaoqin Liao, Yazhou Wang, Yizhe Wang, Chaowei Cheng, Yong Liu, Lei Sun, Xinyi Luo, Xiaoli Zhu, Liancheng Wang, Ziwei Li, Xiao Wang, Dong Li, Anlian Pan
{"title":"Ultra-high brightness Micro-LEDs with wafer-scale uniform GaN-on-silicon epilayers","authors":"Haifeng Wu, Xiao Lin, Qin Shuai, Youliang Zhu, Yi Fu, Xiaoqin Liao, Yazhou Wang, Yizhe Wang, Chaowei Cheng, Yong Liu, Lei Sun, Xinyi Luo, Xiaoli Zhu, Liancheng Wang, Ziwei Li, Xiao Wang, Dong Li, Anlian Pan","doi":"10.1038/s41377-024-01639-3","DOIUrl":"https://doi.org/10.1038/s41377-024-01639-3","url":null,"abstract":"<p>Owing to high pixel density and brightness, gallium nitride (GaN) based micro-light-emitting diodes (Micro-LEDs) are considered revolutionary display technology and have important application prospects in the fields of micro-display and virtual display. However, Micro-LEDs with pixel sizes smaller than 10 μm still encounter technical challenges such as sidewall damage and limited light extraction efficiency, resulting in reduced luminous efficiency and severe brightness non-uniformity. Here, we reported high-brightness green Micro-displays with a 5 μm pixel utilizing high-quality GaN-on-Si epilayers. Four-inch wafer-scale uniform green GaN epilayer is first grown on silicon substrate, which possesses a low dislocation density of 5.25 × 10<sup>8</sup> cm<sup>−</sup><sup>2</sup>, small wafer bowing of 16.7 μm, and high wavelength uniformity (standard deviation STDEV &lt; 1 nm), scalable to 6-inch sizes. Based on the high-quality GaN epilayers, green Micro-LEDs with 5 μm pixel sizes are designed with vertical non-alignment bonding technology. An atomic sidewall passivation method combined with wet treatment successfully addressed the Micro-LED sidewall damages and steadily produced nano-scale surface textures on the pixel top, which unlocked the internal quantum efficiency of the high-quality green GaN-on-Si epi-wafer. Ultra-high brightness exceeding 10<sup>7</sup> cd/m<sup>2</sup> (nits) is thus achieved in the green Micro-LEDs, marking the highest reported results. Furthermore, integration of Micro-LEDs with Si-based CMOS circuits enables the realization of green Micro-LED displays with resolution up to 1080 × 780, realizing high-definition playback of movies and images. This work lays the foundation for the mass production of high-brightness Micro-LED displays on large-size GaN-on-Si epi-wafers.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning with photonic neural cellular automata 利用光子神经细胞自动机进行深度学习
Light-Science & Applications Pub Date : 2024-10-08 DOI: 10.1038/s41377-024-01651-7
Gordon H. Y. Li, Christian R. Leefmans, James Williams, Robert M. Gray, Midya Parto, Alireza Marandi
{"title":"Deep learning with photonic neural cellular automata","authors":"Gordon H. Y. Li, Christian R. Leefmans, James Williams, Robert M. Gray, Midya Parto, Alireza Marandi","doi":"10.1038/s41377-024-01651-7","DOIUrl":"https://doi.org/10.1038/s41377-024-01651-7","url":null,"abstract":"<p>Rapid advancements in deep learning over the past decade have fueled an insatiable demand for efficient and scalable hardware. Photonics offers a promising solution by leveraging the unique properties of light. However, conventional neural network architectures, which typically require dense programmable connections, pose several practical challenges for photonic realizations. To overcome these limitations, we propose and experimentally demonstrate Photonic Neural Cellular Automata (PNCA) for photonic deep learning with sparse connectivity. PNCA harnesses the speed and interconnectivity of photonics, as well as the self-organizing nature of cellular automata through local interactions to achieve robust, reliable, and efficient processing. We utilize linear light interference and parametric nonlinear optics for all-optical computations in a time-multiplexed photonic network to experimentally perform self-organized image classification. We demonstrate binary (two-class) classification of images using as few as 3 programmable photonic parameters, achieving high experimental accuracy with the ability to also recognize out-of-distribution data. The proposed PNCA approach can be adapted to a wide range of existing photonic hardware and provides a compelling alternative to conventional photonic neural networks by maximizing the advantages of light-based computing whilst mitigating their practical challenges. Our results showcase the potential of PNCA in advancing photonic deep learning and highlights a path for next-generation photonic computers.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信