Light-Science & Applications最新文献

筛选
英文 中文
Simultaneous achieving negative photoconductivity response and volatile resistive switching in Cs2CoCl4 single crystals towards artificial optoelectronic synapse
Light-Science & Applications Pub Date : 2024-12-02 DOI: 10.1038/s41377-024-01642-8
Huifang Jiang, Huifang Ji, Zhuangzhuang Ma, Dongwen Yang, Jingli Ma, Mengyao Zhang, Xu Li, Meng Wang, Ying Li, Xu Chen, Di Wu, Xinjian Li, Chongxin Shan, Zhifeng Shi
{"title":"Simultaneous achieving negative photoconductivity response and volatile resistive switching in Cs2CoCl4 single crystals towards artificial optoelectronic synapse","authors":"Huifang Jiang, Huifang Ji, Zhuangzhuang Ma, Dongwen Yang, Jingli Ma, Mengyao Zhang, Xu Li, Meng Wang, Ying Li, Xu Chen, Di Wu, Xinjian Li, Chongxin Shan, Zhifeng Shi","doi":"10.1038/s41377-024-01642-8","DOIUrl":"https://doi.org/10.1038/s41377-024-01642-8","url":null,"abstract":"<p>The development of negative photoconductivity (NPC)-related devices is of great significance for numerous applications, such as optoelectronic detection, neuromorphic computing, and optoelectronic synapses. Here, an unusual but interesting NPC phenomenon in the novel cesium cobalt chlorine (Cs<sub>2</sub>CoCl<sub>4</sub>) single crystal-based optoelectronic devices is reported, which simultaneously possess volatile resistive switching (RS) memory behavior. Joint experiment−theory characterizations reveal that the NPC behavior is derived from the intrinsic vacancy defects of Cs<sub>2</sub>CoCl<sub>4</sub>, which could trap photogenerated charge carriers and produce an internal electric field opposite to the applied electric field. Such NPC effect enables an abnormal photodetection performance with a decrease in electrical conductivity to illumination. Also, a large specific detectivity of 2.7 × 10<sup>12</sup> Jones and broadband NPC detection wavelength from 265 to 780 nm were achieved. In addition to the NPC response, the resulting devices demonstrate a volatile RS performance with a record-low electric field of 5 × 10<sup>4 </sup>V m<sup>−1</sup>. By integrating the characteristics of electric-pulse enhancement from RS and light-pulse depression from NPC, an artificial optoelectronic synapse was successfully demonstrated, and based on the simulation of artificial neural network algorithm, the recognition application of handwritten digital images was realized. These pioneer findings are anticipated to contribute significantly to the practical advancement of metal halides in the fields of in-memory technologies and artificial intelligence.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multiband NIR upconversion core-shell design for enhanced light harvesting of silicon solar cells 用于增强硅太阳能电池采光的多波段近红外上转换核壳设计
Light-Science & Applications Pub Date : 2024-11-25 DOI: 10.1038/s41377-024-01661-5
Yue Wang, Wen Xu, Haichun Liu, Yuhan Jing, Donglei Zhou, Yanan Ji, Jerker Widengren, Xue Bai, Hongwei Song
{"title":"A multiband NIR upconversion core-shell design for enhanced light harvesting of silicon solar cells","authors":"Yue Wang, Wen Xu, Haichun Liu, Yuhan Jing, Donglei Zhou, Yanan Ji, Jerker Widengren, Xue Bai, Hongwei Song","doi":"10.1038/s41377-024-01661-5","DOIUrl":"https://doi.org/10.1038/s41377-024-01661-5","url":null,"abstract":"<p>Exploring lanthanide light upconversion (UC) has emerged as a promising strategy to enhance the near-infrared (NIR) responsive region of silicon solar cells (SSCs). However, its practical application under normal sunlight conditions has been hindered by the narrow NIR excitation bandwidth and the low UC efficiency of conventional materials. Here, we report the design of an efficient multiband UC system based on Ln<sup>3+</sup>/Yb<sup>3+</sup>-doped core-shell upconversion nanoparticles (Ln/Yb-UCNPs, Ln<sup>3+ </sup>= Ho<sup>3+</sup>, Er<sup>3+</sup>, Tm<sup>3+</sup>). In our design, Ln<sup>3+</sup> ions are incorporated into distinct layers of Ln/Yb-UCNPs to function as near-infrared (NIR) absorbers across different spectral ranges. This design achieves broad multiband absorption withtin the 1100 to 2200 nm range, with an aggregated bandwidth of ~500 nm. We have identified a synthetic electron pumping (SEP) effect involving Yb<sup>3+</sup> ions, facilitated by the synergistic interplay of energy transfer and cross-relaxation between Yb<sup>3+</sup> and other ions Ln<sup>3+</sup> (Ho<sup>3+</sup>, Er<sup>3+</sup>, Tm<sup>3+</sup>). This SEP effect enhances the UC efficiency of the nanomaterials by effectively transferring electrons from the low-excited states of Ln<sup>3+</sup> to the excited state of Yb<sup>3+</sup>, resulting in intense Yb<sup>3+</sup> luminescence at ~980 nm within the optimal response region for SSCs, thus markedly improving their overall performance. The SSCs integrated with Ln/Yb-UCNPs with multiband excitation demonstrate the largest reported NIR response range up to 2200 nm, while enabling the highest improvement in absolute photovoltaic efficiency reported, with an increase of 0.87% (resulting in a total efficiency of 19.37%) under standard AM 1.5 G irradiation. Our work tackles the bottlenecks in UCNP-coupled SSCs and introduces a viable approach to extend the NIR response of SSCs.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-shot single-beam coherent Raman scattering thermometry based on optically induced air lasing 基于光诱导空气激光的单光束相干拉曼散射测温技术
Light-Science & Applications Pub Date : 2024-11-25 DOI: 10.1038/s41377-024-01598-9
Xu Lu, Yewei Chen, Francesco Mazza, Siyi He, Zihan Li, Shunlin Huang, Quanjun Wang, Ning Zhang, Bo Shen, Yuzhu Wu, Jinping Yao, Ya Cheng
{"title":"Single-shot single-beam coherent Raman scattering thermometry based on optically induced air lasing","authors":"Xu Lu, Yewei Chen, Francesco Mazza, Siyi He, Zihan Li, Shunlin Huang, Quanjun Wang, Ning Zhang, Bo Shen, Yuzhu Wu, Jinping Yao, Ya Cheng","doi":"10.1038/s41377-024-01598-9","DOIUrl":"https://doi.org/10.1038/s41377-024-01598-9","url":null,"abstract":"<p>Thermometric techniques with high accuracy, fast response and ease of implementation are desirable for the study of dynamic combustion environments, transient reacting flows, and non-equilibrium plasmas. Herein, single-shot single-beam coherent Raman scattering (SS-CRS) thermometry is developed, for the first time to our knowledge, by using air lasing as a probe. We show that the air-lasing-assisted CRS signal has a high signal-to-noise ratio enabling single-shot measurements at a 1 kHz repetition rate. The SS-CRS thermometry consistently exhibits precision of &lt;2.3% at different temperatures, but the inaccuracy grows with the increase in temperature. The high measurement repeatability, 1 kHz acquisition rate and easy-to-implement single-beam scheme are achieved thanks to the unique temporal, spectral and spatial characteristics of air lasing. This work opens a novel avenue for high-speed CRS thermometry, holding tremendous potential for fast diagnostics of transient reacting flows and plasmas.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological protection of optical skyrmions through complex media 穿过复杂介质的光学天幕的拓扑保护
Light-Science & Applications Pub Date : 2024-11-22 DOI: 10.1038/s41377-024-01659-z
An Aloysius Wang, Zimo Zhao, Yifei Ma, Yuxi Cai, Runchen Zhang, Xiaoyi Shang, Yunqi Zhang, Ji Qin, Zhi-Kai Pong, Tádé Marozsák, Binguo Chen, Honghui He, Lin Luo, Martin J. Booth, Steve J. Elston, Stephen M. Morris, Chao He
{"title":"Topological protection of optical skyrmions through complex media","authors":"An Aloysius Wang, Zimo Zhao, Yifei Ma, Yuxi Cai, Runchen Zhang, Xiaoyi Shang, Yunqi Zhang, Ji Qin, Zhi-Kai Pong, Tádé Marozsák, Binguo Chen, Honghui He, Lin Luo, Martin J. Booth, Steve J. Elston, Stephen M. Morris, Chao He","doi":"10.1038/s41377-024-01659-z","DOIUrl":"https://doi.org/10.1038/s41377-024-01659-z","url":null,"abstract":"<p>Optical Skyrmions have many important properties that make them ideal units for high-density data applications, including the ability to carry digital information through a discrete topological number and the independence of spatially varying polarization to other dimensions. More importantly, the topological nature of the optical Skyrmion heuristically suggests a strong degree of robustness to perturbations, which is crucial for reliably carrying information in noisy environments. However, the study of the topological robustness of optical Skyrmions is still in its infancy. Here, we quantify this robustness precisely by proving that the topological nature of the Skyrmion arises from its structure on the boundary and, by duality, is resilient to spatially varying perturbations provided they respect the relevant boundary conditions of the unperturbed Skyrmion. We then present experimental evidence validating this robustness in the context of paraxial Skyrmion beams against complex polarization aberrations. Our work provides a framework for handling various perturbations of Skyrmion fields and offers guarantees of robustness in a general sense. This, in turn, has implications for applications of the Skyrmion where their topological nature is exploited explicitly, and, in particular, provides an underpinning for the use of optical Skyrmions in communications and computing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"180 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The brightest multi-colour phonon lasers 最亮的多色声子激光器
Light-Science & Applications Pub Date : 2024-11-13 DOI: 10.1038/s41377-024-01648-2
Mishkat Bhattacharya
{"title":"The brightest multi-colour phonon lasers","authors":"Mishkat Bhattacharya","doi":"10.1038/s41377-024-01648-2","DOIUrl":"https://doi.org/10.1038/s41377-024-01648-2","url":null,"abstract":"<p>A new device applies a single-colour electronic injection to create the brightest multi-colour phonon laser, with ten times more power and much narrower linewidth than others.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative CQD detector for broadband multispectral imaging 用于宽带多光谱成像的创新型 CQD 探测器
Light-Science & Applications Pub Date : 2024-11-12 DOI: 10.1038/s41377-024-01621-z
Shengli Sun, Yaran Li, Fansheng Chen
{"title":"Innovative CQD detector for broadband multispectral imaging","authors":"Shengli Sun, Yaran Li, Fansheng Chen","doi":"10.1038/s41377-024-01621-z","DOIUrl":"https://doi.org/10.1038/s41377-024-01621-z","url":null,"abstract":"<p><i>Nature Photonics</i> <b>18</b>, 1147–1154 (2024)</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bessel beam optical coherence microscopy enables multiscale assessment of cerebrovascular network morphology and function 贝塞尔光束光学相干显微镜可对脑血管网络的形态和功能进行多尺度评估
Light-Science & Applications Pub Date : 2024-11-11 DOI: 10.1038/s41377-024-01649-1
Lukas Glandorf, Bastian Wittmann, Jeanne Droux, Chaim Glück, Bruno Weber, Susanne Wegener, Mohamad El Amki, Rainer Leitgeb, Bjoern Menze, Daniel Razansky
{"title":"Bessel beam optical coherence microscopy enables multiscale assessment of cerebrovascular network morphology and function","authors":"Lukas Glandorf, Bastian Wittmann, Jeanne Droux, Chaim Glück, Bruno Weber, Susanne Wegener, Mohamad El Amki, Rainer Leitgeb, Bjoern Menze, Daniel Razansky","doi":"10.1038/s41377-024-01649-1","DOIUrl":"https://doi.org/10.1038/s41377-024-01649-1","url":null,"abstract":"<p>Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over 1000 × 1000 × 360 μm<sup>3</sup> field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical coherence tomography, our method enables the computation of both axial and transverse blood velocity components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular function and neurovascular pathologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative phase imaging endoscopy with a metalens 使用金属丝进行定量相位成像内窥镜检查
Light-Science & Applications Pub Date : 2024-11-08 DOI: 10.1038/s41377-024-01587-y
Aamod Shanker, Johannes E. Fröch, Saswata Mukherjee, Maksym Zhelyeznyakov, Steven L. Brunton, Eric J. Seibel, Arka Majumdar
{"title":"Quantitative phase imaging endoscopy with a metalens","authors":"Aamod Shanker, Johannes E. Fröch, Saswata Mukherjee, Maksym Zhelyeznyakov, Steven L. Brunton, Eric J. Seibel, Arka Majumdar","doi":"10.1038/s41377-024-01587-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01587-y","url":null,"abstract":"<p>Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a <span>({28}^{circ})</span> field of view and 0.<span>({2}{pi})</span> phase resolution ( ~ 0.<span>({1}{lambda})</span> in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-fast light-field microscopy with event detection 带事件检测功能的超快光场显微镜
Light-Science & Applications Pub Date : 2024-11-07 DOI: 10.1038/s41377-024-01603-1
Liheng Bian, Xuyang Chang, Hanwen Xu, Jun Zhang
{"title":"Ultra-fast light-field microscopy with event detection","authors":"Liheng Bian, Xuyang Chang, Hanwen Xu, Jun Zhang","doi":"10.1038/s41377-024-01603-1","DOIUrl":"https://doi.org/10.1038/s41377-024-01603-1","url":null,"abstract":"<p>The event detection technique has been introduced to light-field microscopy, boosting its imaging speed in orders of magnitude with simultaneous axial resolution enhancement in scattering medium.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum sensing with optically accessible spin defects in van der Waals layered materials 利用范德华层材料中光可及自旋缺陷实现量子传感
Light-Science & Applications Pub Date : 2024-11-05 DOI: 10.1038/s41377-024-01630-y
Hong-Hua Fang, Xiao-Jie Wang, Xavier Marie, Hong-Bo Sun
{"title":"Quantum sensing with optically accessible spin defects in van der Waals layered materials","authors":"Hong-Hua Fang, Xiao-Jie Wang, Xavier Marie, Hong-Bo Sun","doi":"10.1038/s41377-024-01630-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01630-y","url":null,"abstract":"<p>Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信