Sheng Ye, Yue Han, Li-Zheng Liu, Weiping Wan, Ruiqi Wang, Mingna Xun, Qiang Li, Qihuang Gong, Jianwei Wang, Yan Li
{"title":"Entanglement-controlled vectorial meta-holography","authors":"Sheng Ye, Yue Han, Li-Zheng Liu, Weiping Wan, Ruiqi Wang, Mingna Xun, Qiang Li, Qihuang Gong, Jianwei Wang, Yan Li","doi":"10.1038/s41377-025-01818-w","DOIUrl":"https://doi.org/10.1038/s41377-025-01818-w","url":null,"abstract":"<p>Metasurfaces can precisely manipulate the amplitude, phase, and polarization of incident light through subwavelength structures, greatly advancing the quantum meta-holographic imaging. However, the current methods of using quantum holography only control either the amplitude or the phase on the imaging plane, so the resulted scalar holography without the polarization distribution has limited imaging channels. Here, the vectorial meta-holography using entangled signal-idler photon pairs is experimentally demonstrated to realize remotely controlled multi-channel quantum imaging. By simultaneous control of the amplitude ratio between two cross-polarization holographic images and their phase difference on the image plane, the polarization distribution accordingly changes with the incident polarization state. The accurate correspondence ensures the correct reconstruction of 32 incident polarization states with an average fidelity up to 94.78%. This enables entangled idler photons to remotely control the holographic images reconstructed by the entangled signal photons, where the signal-to-noise ratio is as high as 10.78 dB, even for maximally mixed quantum states. This vectorial meta-holography using entangled states has a larger polarization state information capacity and will facilitate miniaturized quantum imaging and efficient quantum state tomography.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"97 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143695445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultra-compact multi-task processor based on in-memory optical computing","authors":"Wencan Liu, Yuyao Huang, Run Sun, Tingzhao Fu, Sigang Yang, Hongwei Chen","doi":"10.1038/s41377-025-01814-0","DOIUrl":"https://doi.org/10.1038/s41377-025-01814-0","url":null,"abstract":"<p>To enhance the computational density and energy efficiency of on-chip neuromorphic hardware, this study introduces a novel network architecture for multi-task processing with in-memory optical computing. On-chip optical neural networks are celebrated for their capability to transduce a substantial volume of parameters into optical form while conducting passive computing, yet they encounter challenges in scalability and multitasking. Leveraging the principles of transfer learning, this approach involves embedding the majority of parameters into fixed optical components and a minority into adjustable electrical components. Furthermore, with deep regression algorithm in modeling physical propagation process, a compact optical neural network achieve to handle diverse tasks. In this work, two ultra-compact in-memory diffraction-based chips with integration of more than 60,000 parameters/mm<sup>2</sup> were fabricated, employing deep neural network model and the hard parameter sharing algorithm, to perform multifaceted classification and regression tasks, respectively. The experimental results demonstrate that these chips achieve accuracies comparable to those of electrical networks while significantly reducing the power-intensive digital computation by 90%. Our work heralds strong potential for advancing in-memory optical computing frameworks and next generation of artificial intelligence platforms.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Ling, Wei Lin, Zhaoheng Liang, Minjie Pan, Chiyi Wei, Xuewen Chen, Yang Yang, Zhijin Xiong, Yuankai Guo, Xiaoming Wei, Zhongmin Yang
{"title":"Practical GHz single-cavity all-fiber dual-comb laser for high-speed spectroscopy","authors":"Lin Ling, Wei Lin, Zhaoheng Liang, Minjie Pan, Chiyi Wei, Xuewen Chen, Yang Yang, Zhijin Xiong, Yuankai Guo, Xiaoming Wei, Zhongmin Yang","doi":"10.1038/s41377-025-01811-3","DOIUrl":"https://doi.org/10.1038/s41377-025-01811-3","url":null,"abstract":"<p>Dual-comb spectroscopy (DCS) with few-GHz tooth spacing that provides a better trade-off between spectral resolution and refresh rate is a powerful tool for measuring and analyzing rapidly evolving transient events. Despite such an exciting opportunity, existing technologies compromise either the spectral resolution or refresh rate, leaving few-GHz DCS with robust design largely unmet for frontier applications. In this work, we demonstrate a novel GHz DCS by exploring the multimode interference-mediated spectral filtering effect in an all-fiber ultrashort cavity configuration. The GHz single-cavity all-fiber dual-comb source is seeded by a dual-wavelength mode-locked fiber laser operating at fundamental repetition rates of about 1.0 GHz differing by 148 kHz, which has an excellent stability in the free-running state that the Allan deviation is only 101.7 mHz for an average time of 1 s. Thanks to the large repetition rate difference between the asynchronous dichromatic pulse trains, the GHz DCS enables a refresh time as short as 6.75 μs, making it promising for studying nonrepeatable transient phenomena in real time. To this end, the practicality of the present GHz DCS is validated by successfully capturing the ‘shock waves’ of balloon and firecracker explosions outdoors. This GHz single-cavity all-fiber dual-comb system promises a noteworthy improvement in acquisition speed and reliability without sacrificing measurement accuracy, anticipated as a practical tool for high-speed applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-ang Fan, Xiao Li, Shijie Wei, Yishan Li, Xinyue Long, Hongfeng Liu, Xinfang Nie, Jack Ng, Dawei Lu
{"title":"Solving non-Hermitian physics for optical manipulation on a quantum computer","authors":"Yu-ang Fan, Xiao Li, Shijie Wei, Yishan Li, Xinyue Long, Hongfeng Liu, Xinfang Nie, Jack Ng, Dawei Lu","doi":"10.1038/s41377-025-01769-2","DOIUrl":"https://doi.org/10.1038/s41377-025-01769-2","url":null,"abstract":"<p>Intense laser light, with its ability to trap small particles, is providing us unprecedented access to the microscopic world. Nevertheless, owing to its open nature, optical force is nonconservative and can only be described by a non-Hermitian theory. This non-Hermiticity sets such system apart from conventional systems and has offered rich physics, such as the possession of the exceptional points. Consequently, analyzing and demonstrating the dynamics of large optically-bound clusters becomes an intricate challenge. Here, we developed a scalable quantum approach that allows us to predict the trajectories of optically trapped particles and tackle the associated non-Hermitian physics. This approach is based on the linear combination of unitary operations. With this, we experimentally revealed the non-Hermiticity and exceptional point for a single or multiple particles trapped by optical force fields, using a nuclear magnetic resonance quantum processor. Our method’s scalability and stability have offering a promising path for large-scale optical manipulation with non-Hermitian dynamics.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Zaminga, Andres Martinez, Heming Huang, Damien Rontani, Francesco Morichetti, Andrea Melloni, Frédéric Grillot
{"title":"Optical chaotic signal recovery in turbulent environments using a programmable optical processor","authors":"Sara Zaminga, Andres Martinez, Heming Huang, Damien Rontani, Francesco Morichetti, Andrea Melloni, Frédéric Grillot","doi":"10.1038/s41377-025-01784-3","DOIUrl":"https://doi.org/10.1038/s41377-025-01784-3","url":null,"abstract":"<p>Optical chaos offers a promising approach to establishing secure communication at high data rates in a shared physical channel, like optical fibers and free space. However, the required synchronization between the transmitter and the receiver can be severely impaired by the nonidealities of the optical link. In particular, free-space optical communications are affected by atmospheric turbulence, which causes beam scintillation and results in time-varying fading of the optical intensity at the receiver side. In this work, we investigate experimentally the propagation of a chaotic signal in an indoor optical link with controllable synthetic turbulence, and we show that the degradation of chaos properties caused by the turbulent environment can be fully mitigated in the optical domain using an adaptive multi-aperture receiver. The proposed receiver integrates a two-dimensional array of optical antennas and a programmable optical processor (POP) on a silicon photonic platform. With respect to a conventional single-aperture receiver, the POP-assisted receiver recovers the complex dynamics of the optical chaos, ensuring a high degree of correlation between the transmitted signal and the received signal, even for a high degree of turbulence. Our results demonstrate the possibility of establishing and maintaining reliable, secure communication in a chaos-based crypto-system in a free space optical link of km-range length.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scalable on-chip diffractive speckle spectrometer with high spectral channel density","authors":"Zimeng Zhang, Shumin Xiao, Qinghai Song, Ke Xu","doi":"10.1038/s41377-025-01797-y","DOIUrl":"https://doi.org/10.1038/s41377-025-01797-y","url":null,"abstract":"<p>The chip-scale integrated spectrometers are opening new avenues for a much wider range of applications than their conventional benchtop counterparts. While spectral reconstruction should be in command of both spectral resolution and bandwidth, a large number of spectral channels is among the key goals of the spectrometer design. However, the chip footprint eventually limits the spectral channel capacities of well-established spectral-to-spatial mapping structures like dispersive elements, filter arrays, random media, and so on. Here we suggest an alternative scheme by encoding the spectral information using on-chip diffractive metasurfaces. The in-plane metasurface is capable of producing intensity speckles to resolve the spectra. The spectral richness is greatly increased by scaling the architecture via three layers of cascaded metasurfaces. The readout of speckles is realized by two-dimensional imaging of the grating-diffracted pattern, enabling a large matrix for spectrum reconstruction. The spectrometer has a resolution of 70 pm over a bandwidth of 100 nm. Up to 1400 spectral channels were obtained within a compact chip area of only 150 μm × 950 μm. The on-chip diffractive spectrometer has a benchmark channel density of up to 10021 ch/mm<sup>2</sup>, which compares favorably against other state-of-art waveguide structures.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sina M. Koehlenbeck, Lance Lee, Mario D. Balcazar, Ying Chen, Vincent Esposito, Jerry Hastings, Matthias C. Hoffmann, Zhirong Huang, May-Ling Ng, Saxon Price, Takahiro Sato, Matthew Seaberg, Yanwen Sun, Adam White, Lin Zhang, Brian Lantz, Diling Zhu
{"title":"Dynamic motion trajectory control with nanoradian accuracy for multi-element X-ray optical systems via laser interferometry","authors":"Sina M. Koehlenbeck, Lance Lee, Mario D. Balcazar, Ying Chen, Vincent Esposito, Jerry Hastings, Matthias C. Hoffmann, Zhirong Huang, May-Ling Ng, Saxon Price, Takahiro Sato, Matthew Seaberg, Yanwen Sun, Adam White, Lin Zhang, Brian Lantz, Diling Zhu","doi":"10.1038/s41377-025-01774-5","DOIUrl":"https://doi.org/10.1038/s41377-025-01774-5","url":null,"abstract":"<p>The past decades have witnessed the development of new X-ray beam sources with brightness growing at a rate surpassing Moore’s law. Current and upcoming diffraction limited and fully coherent X-ray beam sources, including multi-bend achromat based synchrotron sources and high repetition rate X-ray free electron lasers, puts increasingly stringent requirements on stability and accuracy of X-ray optics systems. Parasitic motion errors at sub-micro radian scale in beam transport and beam conditioning optics can lead to significant loss of coherence and brightness delivered from source to experiment. To address this challenge, we incorporated optical metrology based on interferometric length and angle sensing and real-time correction as part of the X-ray optics motion control system. A prototype X-ray optics system was constructed following the optical layout of a tunable X-ray cavity. On-line interferometric metrology enabled dynamical feedback to a motion control system to track and compensate for motion errors. The system achieved sub-microradian scale performance, as multiple optical elements are synchronously and continuously adjusted. This first proof of principle measurement demonstrated both the potential and necessity of incorporating optical metrology as part of the motion control architecture for large scale X-ray optical systems such as monochromators, delay lines, and in particular, X-ray cavity systems to enable the next generation cavity-based X-ray free electron lasers.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joonsup Shim, Jinha Lim, Inki Kim, Jaeyong Jeong, Bong Ho Kim, Seong Kwang Kim, Dae-Myeong Geum, SangHyeon Kim
{"title":"Room-temperature waveguide-integrated photodetector using bolometric effect for mid-infrared spectroscopy applications","authors":"Joonsup Shim, Jinha Lim, Inki Kim, Jaeyong Jeong, Bong Ho Kim, Seong Kwang Kim, Dae-Myeong Geum, SangHyeon Kim","doi":"10.1038/s41377-025-01803-3","DOIUrl":"https://doi.org/10.1038/s41377-025-01803-3","url":null,"abstract":"<p>Waveguide-integrated mid-infrared (MIR) photodetectors are pivotal components for the development of molecular spectroscopy applications, leveraging mature photonic integrated circuit (PIC) technologies. Despite various strategies, critical challenges still remain in achieving broadband photoresponse, cooling-free operation, and large-scale complementary-metal-oxide-semiconductor (CMOS)-compatible manufacturability. To leap beyond these limitations, the bolometric effect – a thermal detection mechanism – is introduced into the waveguide platform. More importantly, we pursue a free-carrier absorption (FCA) process in germanium (Ge) to create an efficient light-absorbing medium, providing a pragmatic solution for full coverage of the MIR spectrum without incorporating exotic materials into CMOS. Here, we present an uncooled waveguide-integrated photodetector based on a Ge-on-insulator (Ge-OI) PIC architecture, which exploits the bolometric effect combined with FCA. Notably, our device exhibits a broadband responsivity of 28.35%/mW across 4030–4360 nm (and potentially beyond), challenging the state of the art, while achieving a noise-equivalent power of 4.03 × 10<sup>−7 </sup>W/Hz<sup>0.5</sup> at 4180 nm. We further demonstrate label-free sensing of gaseous carbon dioxide (CO<sub>2</sub>) using our integrated photodetector and sensing waveguide on a single chip. This approach to room-temperature waveguide-integrated MIR photodetection, harnessing bolometry with FCA in Ge, not only facilitates the realization of fully integrated lab-on-a-chip systems with wavelength flexibility but also provides a blueprint for MIR PICs with CMOS-foundry-compatibility.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum key distribution with chromatic codes","authors":"Zhihui Yan, Xiaojun Jia","doi":"10.1038/s41377-025-01781-6","DOIUrl":"https://doi.org/10.1038/s41377-025-01781-6","url":null,"abstract":"<p>Quantum key distribution with different frequency codes is demonstrated with a reconfigurable entanglement distribution network, which is essential for scalable and resource-efficient quantum communications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zimo Zhao, Yifei Ma, Zipei Song, Jacopo Antonello, Jiahe Cui, Binguo Chen, Jingyu Wang, Bangshan Sun, Honghui He, Lin Luo, Julian A. J. Fells, Steve J. Elston, Martin J. Booth, Stephen M. Morris, Chao He
{"title":"Intensity adaptive optics","authors":"Zimo Zhao, Yifei Ma, Zipei Song, Jacopo Antonello, Jiahe Cui, Binguo Chen, Jingyu Wang, Bangshan Sun, Honghui He, Lin Luo, Julian A. J. Fells, Steve J. Elston, Martin J. Booth, Stephen M. Morris, Chao He","doi":"10.1038/s41377-025-01779-0","DOIUrl":"https://doi.org/10.1038/s41377-025-01779-0","url":null,"abstract":"<p>Adaptive optics (AO) is a powerful tool employed across various research fields, from aerospace to microscopy. Traditionally, AO has focused on correcting optical phase aberrations, with recent advances extending to polarisation compensation. However, intensity errors are also prevalent in optical systems, yet effective correction methods are still in their infancy. Here, we introduce a novel AO approach, termed intensity adaptive optics (I-AO), which employs a dual-feedback loop mechanism to first address non-uniform intensity distribution and subsequently compensate for energy loss at the pupil plane. We demonstrate that I-AO can operate in both sensor-based and sensorless formats and validate its feasibility by quantitatively analysing the focus quality of an aberrated system. This technique expands the AO toolkit, paving the way for next-generation AO technology.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}