Non-contact and nanometer-scale measurement of PN junction depth buried in Si wafers using terahertz emission spectroscopy

IF 20.6 Q1 OPTICS
Fumikazu Murakami, Shinji Ueyama, Kenji Suzuki, Ingi Kim, Inkeun Baek, Sangwoo Bae, Dougyong Sung, Myungjun Lee, Sungyoon Ryu, Yusin Yang, Masayoshi Tonouchi
{"title":"Non-contact and nanometer-scale measurement of PN junction depth buried in Si wafers using terahertz emission spectroscopy","authors":"Fumikazu Murakami, Shinji Ueyama, Kenji Suzuki, Ingi Kim, Inkeun Baek, Sangwoo Bae, Dougyong Sung, Myungjun Lee, Sungyoon Ryu, Yusin Yang, Masayoshi Tonouchi","doi":"10.1038/s41377-025-01911-0","DOIUrl":null,"url":null,"abstract":"<p>Buried channel array transistors enable fast and high-density integrated devices. The depth of the PN junction and carrier dynamics at the depletion layer in silicon wafers have a crucial influence on their performance and reliability. Therefore, rapid and non-contact/non-destructive inspection tools are necessary to accelerate the semiconductor industry. Despite the great efforts in this field, realizing a technique to probe the junction depth and carrier dynamics at the PN junction inside wafers remains challenging. Herein, we propose a new approach to access PN junctions embedded in wafers using terahertz (THz) emission spectroscopy. THz emission measurements and simulations demonstrate that the amplitude and polarity of THz emissions reflect the junction depth and carrier dynamics at the PN junctions. It allows us to evaluate the junction depth non-destructively with nanometer-scale accuracy, surpassing the limits of traditional techniques. Laser-induced THz emission spectroscopy is a promising method for the sensitive and non-contact/non-destructive evaluation of Si wafers and will benefit the modern semiconductor industry.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"14 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01911-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Buried channel array transistors enable fast and high-density integrated devices. The depth of the PN junction and carrier dynamics at the depletion layer in silicon wafers have a crucial influence on their performance and reliability. Therefore, rapid and non-contact/non-destructive inspection tools are necessary to accelerate the semiconductor industry. Despite the great efforts in this field, realizing a technique to probe the junction depth and carrier dynamics at the PN junction inside wafers remains challenging. Herein, we propose a new approach to access PN junctions embedded in wafers using terahertz (THz) emission spectroscopy. THz emission measurements and simulations demonstrate that the amplitude and polarity of THz emissions reflect the junction depth and carrier dynamics at the PN junctions. It allows us to evaluate the junction depth non-destructively with nanometer-scale accuracy, surpassing the limits of traditional techniques. Laser-induced THz emission spectroscopy is a promising method for the sensitive and non-contact/non-destructive evaluation of Si wafers and will benefit the modern semiconductor industry.

Abstract Image

利用太赫兹发射光谱非接触和纳米尺度测量埋在硅片中的PN结深度
埋地通道阵列晶体管使快速和高密度集成器件成为可能。硅片PN结深度和损耗层载流子动力学对硅片的性能和可靠性有重要影响。因此,快速和非接触/非破坏性的检测工具是加速半导体行业发展的必要条件。尽管在这一领域做出了巨大的努力,但实现一种探测晶圆内PN结结深度和载流子动力学的技术仍然具有挑战性。在此,我们提出了一种使用太赫兹(THz)发射光谱来访问嵌入在晶圆中的PN结的新方法。太赫兹辐射的测量和模拟表明,太赫兹辐射的振幅和极性反映了PN结的结深和载流子动力学。它使我们能够以纳米尺度的精度非破坏性地评估结深度,超越了传统技术的限制。激光诱导太赫兹发射光谱是一种很有前途的、灵敏的、非接触/非破坏性评价硅片的方法,将使现代半导体工业受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信