Haiyue Sun, Shunda Qiao, Ying He, Xiaorong Sun, Yufei Ma
{"title":"Parts-per-quadrillion level gas molecule detection: CO-LITES sensing","authors":"Haiyue Sun, Shunda Qiao, Ying He, Xiaorong Sun, Yufei Ma","doi":"10.1038/s41377-025-01864-4","DOIUrl":"https://doi.org/10.1038/s41377-025-01864-4","url":null,"abstract":"<p>Highly sensitive gas detection plays a crucial role in advanced scientific and technological fields. This paper presents a parts-per-quadrillion (ppq) level ultra-highly sensitive light-induced thermoelectric spectroscopy (LITES) sensor for the first time. The artificial fish swarm algorithm auto-designed multi-pass cell (MPC) with double helix pattern, and the polymer modified round-head quartz tuning fork (QTF) with low-resonant frequency (<i>f</i><sub>0</sub>) were adopted to improve the gas absorption and QTF’s detection ability. The obtained MPC, with a long optical path length (OPL) of 25.8 m and a small volume of 165.8 ml, is beneficial for increasing gas absorption while keeping the sensor compact. The novel QTF was structurally optimized to obtain low <i>f</i><sub>0</sub> (~9.5 kHz) and modified by polydimethylsiloxane (PDMS) to reduce heat diffusion and enhance vibration amplitude. A strong absorption line of carbon monoxide (CO) located in the mid-infrared region (4.59 μm) was chosen as the target line. The signal-to-noise ratio (SNR) of CO-LITES sensor based on the novel QTF was improved by 10.59 times, reaching the highest level when compared to the commercial QTF. The corresponding minimum detection limit (MDL) was calculated to be 23 ppt. When the integration time of the sensor system was increased to 500 s, the MDL could be improved to 920.7 ppq. Compared to the reported spectroscopy techniques for CO gas detection, the LITES sensor in this study offers an excellent result in terms of detection sensitivity.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"93 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143889748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingzhi Lin, Feng Xing, Liwei Su, Kekuan Wang, Yulan Liu, Diming Zhang, Xusan Yang, Huijun Tan, Zhijing Zhu, Depeng Wang
{"title":"Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution","authors":"Bingzhi Lin, Feng Xing, Liwei Su, Kekuan Wang, Yulan Liu, Diming Zhang, Xusan Yang, Huijun Tan, Zhijing Zhu, Depeng Wang","doi":"10.1038/s41377-025-01842-w","DOIUrl":"https://doi.org/10.1038/s41377-025-01842-w","url":null,"abstract":"<p>Light-field imaging has wide applications in various domains, including microscale life science imaging, mesoscale neuroimaging, and macroscale fluid dynamics imaging. The development of deep learning-based reconstruction methods has greatly facilitated high-resolution light-field image processing, however, current deep learning-based light-field reconstruction methods have predominantly concentrated on the microscale. Considering the multiscale imaging capacity of light-field technique, a network that can work over variant scales of light-field image reconstruction will significantly benefit the development of volumetric imaging. Unfortunately, to our knowledge, no one has reported a universal high-resolution light-field image reconstruction algorithm that is compatible with microscale, mesoscale, and macroscale. To fill this gap, we present a real-time and universal network (RTU-Net) to reconstruct high-resolution light-field images at any scale. RTU-Net, as the first network that works over multiscale light-field image reconstruction, employs an adaptive loss function based on generative adversarial theory and consequently exhibits strong generalization capability. We comprehensively assessed the performance of RTU-Net through the reconstruction of multiscale light-field images, including microscale tubulin and mitochondrion dataset, mesoscale synthetic mouse neuro dataset, and macroscale light-field particle imaging velocimetry dataset. The results indicated that RTU-Net has achieved real-time and high-resolution light-field image reconstruction for volume sizes ranging from 300 μm × 300 μm × 12 μm to 25 mm × 25 mm × 25 mm, and demonstrated higher resolution when compared with recently reported light-field reconstruction networks. The high-resolution, strong robustness, high efficiency, and especially the general applicability of RTU-Net will significantly deepen our insight into high-resolution and volumetric imaging.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143884805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Light in heart, forge ahead—Professor Rui Wang’s adventures in perovskite solar cell frontiers","authors":"Ji Wang","doi":"10.1038/s41377-025-01863-5","DOIUrl":"https://doi.org/10.1038/s41377-025-01863-5","url":null,"abstract":"<p>As depicted in ancient Greek mythology, Prometheus couldn’t bear the sight of humanity struggling in the darkness, crafted a long reed, and took the risk of approaching the sun to steal fire. He fearlessly brought this light to the world, defying what Zeus had ordered the gods not to do. His brave act ushered in the dawn of civilization for mankind. In this issue of “Light People”, Professor Rui Wang is invited to share stories about his adventures in improving perovskite solar cells for the full utilization of sunlight in daily lives, much like Prometheus bringing the gift of light to humanity. Perovskite solar cells hold great potential for both civilian applications and commercial purposes, such as rooftop solar panels, solar chargers, and solar-powered vehicles.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanophotonic sensing and label-free imaging of extracellular vesicles","authors":"Isabel Barth, Hakho Lee","doi":"10.1038/s41377-025-01866-2","DOIUrl":"https://doi.org/10.1038/s41377-025-01866-2","url":null,"abstract":"<p>This review examines imaging-based nanophotonic biosensing and interferometric label-free imaging, with a particular focus on vesicle detection. It specifically compares dielectric and plasmonic metasurfaces for label-free protein and extracellular vesicle detection, highlighting their respective advantages and limitations. Key topics include: (i) refractometric sensing principles using resonant dielectric and plasmonic surfaces; (ii) state-of-the-art developments in both plasmonic and dielectric nanostructured resonant surfaces; (iii) a detailed comparison of resonance characteristics, including amplitude, quality factor, and evanescent field enhancement; and (iv) the relationship between sensitivity, near-field enhancement, and analyte overlap in different sensing platforms. The review provides insights into the fundamental differences between plasmonic and dielectric platforms, discussing their fabrication, integration potential, and suitability for various analyte sizes. It aims to offer a unified, application-oriented perspective on the potential of these resonant surfaces for biosensing and imaging, aiming at addressing topics of interest for both photonics experts and potential users of these technologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Free-space high-Q nanophotonics","authors":"Jianbo Yu, Wenzhe Yao, Min Qiu, Qiang Li","doi":"10.1038/s41377-025-01825-x","DOIUrl":"https://doi.org/10.1038/s41377-025-01825-x","url":null,"abstract":"<p>High-Q nanophotonic devices hold great importance in both fundamental research and engineering applications. Their ability to provide high spectral resolution and enhanced light-matter interactions makes them promising in various fields such as sensing, filters, lasing, nonlinear optics, photodetection, coherent thermal emission, and laser stealth. While Q-factors as large as 10<sup>9</sup> have been achieved experimentally in on-chip microresonators, these modes are excited through near-field coupling of optical fibers. Exciting high-Q modes via free-space light presents a significant challenge primarily due to the larger fabrication area and more lossy channels associated with free-space nanophotonic devices. This Review provides a comprehensive overview of the methods employed to achieve high-Q modes, highlights recent research progress and applications, and discusses the existing challenges as well as the prospects in the field of free-space high-Q nanophotonics.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143877961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological links and knots of speckled light mediated by coherence singularities","authors":"Zhuoyi Wang, Xingyuan Lu, Zhigang Chen, Yangjian Cai, Chengliang Zhao","doi":"10.1038/s41377-025-01865-3","DOIUrl":"https://doi.org/10.1038/s41377-025-01865-3","url":null,"abstract":"<p>Links and knots are exotic topological structures that have garnered significant interest across multiple branches of natural sciences. Coherent links and knots, such as those constructed by phase or polarization singularities of coherent light, have been observed in various three-dimensional optical settings. However, incoherent links and knots—knotted or connected lines of coherence singularities—arise from a fundamentally different concept. They are “hidden” in the statistic properties of a randomly fluctuating field, making their presence often elusive or undetectable. Here, we theoretically construct and experimentally demonstrate such topological entities of incoherent light. By leveraging a state-of-the-art incoherent modal-decomposition scheme, we unveil incoherent topological structures from fluctuating light speckles, including Hopf links and Trefoil knots of coherence singularities that are robust against coherence and intensity fluctuations. Our work is applicable to diverse wave systems where incoherence or practical coherence is prevalent, and may pave the way for design and implementation of statistically-shaped topological structures for various applications such as high-dimensional optical information encoding and optical communications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143877891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Face-to-face integrated tandem quantum-dot LEDs with high performance and multifunctionality","authors":"Haotao Li, Jiming Wang, Shuming Chen","doi":"10.1038/s41377-025-01835-9","DOIUrl":"https://doi.org/10.1038/s41377-025-01835-9","url":null,"abstract":"<p>The realization of solution-processed tandem quantum-dot LEDs (QLEDs) remains a technical challenge due to the limitations of inefficient interconnect layer and the damage caused by multiple solution processes. Here, we develop a high performance tandem QLED by face-to-face integrating a top-emitting QLED with a transparent QLED. The top and bottom units can be addressed independently, thereby enabling the tandem QLED to operate in series, parallel, and color-tunable modes for multifunctionality. In series mode, QLEDs demonstrate an ultra-low turn-on voltage of 3.3 V and a record-breaking external quantum efficiency of 60.7%. In parallel mode, QLEDs achieve an impressive brightness of over 4.8 × 10<sup>6 </sup>cd m<sup>-2</sup>. In color-tunable mode, the color, brightness, and color temperature can all be adjusted with a color tuning range of 114% NSTC. Moreover, both series and parallel connections contribute to an improved stability, resulting in a T<sub>95</sub> lifetime of nearly 30,000 h at 1000 cd m<sup>-2</sup>, which is an improvement of approximately 2.8 times over control devices. Our work offers a feasible solution for achieving multifunctional tandem QLEDs with the advantages of solution processed, high efficiency, high brightness, long lifetime and full color tunability for various light source applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"09 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaojun Xie, Chao Wei, Xingchen He, Yake Chen, Chenghao Wang, Jihui Sun, Lin Jiang, Jia Ye, Xihua Zou, Wei Pan, Lianshan Yan
{"title":"A 3.584 Tbps coherent receiver chip on InP-LiNbO3 wafer-level integration platform","authors":"Xiaojun Xie, Chao Wei, Xingchen He, Yake Chen, Chenghao Wang, Jihui Sun, Lin Jiang, Jia Ye, Xihua Zou, Wei Pan, Lianshan Yan","doi":"10.1038/s41377-025-01821-1","DOIUrl":"https://doi.org/10.1038/s41377-025-01821-1","url":null,"abstract":"<p>The rapid advancement of the thin-film lithium niobate (LiNbO<sub>3</sub>) platform has established it as a premier choice for high-performance photonics integrated circuits. However, the scalability and cost-efficiency of this platform are hindered by the reliance on chip-level fabrication and integration for passive and active components, necessitating a robust wafer-level LiNbO<sub>3</sub> heterogeneous integration platform. Despite its critical role in enabling ultrahigh-speed optical interconnects, as well as optical mmWave/THz sensing and communication, the realization of ultrahigh-speed photodiodes and optical coherent receivers on the LiNbO₃ platform remains an unresolved challenge. This is primarily due to the challenges associated with the large-scale integration of direct-bandgap materials. To address these challenges, we have developed a scalable, high-speed InP-LiNbO₃ wafer-level heterogeneous integration platform. This platform facilitates the fabrication of ultrahigh-speed photodiodes with a bandwidth of 140 GHz, capable of receiving high-quality 100-Gbaud pulse amplitude modulation (PAM4) signals. Moreover, we demonstrate a seven-channel, single-polarization I–Q coherent receiver chip with an aggregate receiving capacity of 3.584 Tbit s<sup>-1</sup>. This coherent receiver exhibits a balanced detection bandwidth of 60 GHz and a common mode rejection ratio (CMRR) exceeding 20 dB. It achieves receiving capacities of 600 Gbit s<sup>-1</sup> λ<sup>-1</sup> with a 100-Gbaud 64-QAM signal and 512 Gbit s<sup>-1</sup> λ<sup>-1</sup> with a 128-Gbaud 16-QAM signal. Furthermore, energy consumption as low as 9.6 fJ bit<sup>-1</sup> and 13.5 fJ bit<sup>-1</sup> is achieved for 200 Gbit s<sup>-1</sup> and 400 Gbit s<sup>-1</sup> capacities, respectively. Our work provides a viable pathway toward enabling Pbps hyperscale data center interconnects, as well as optical mmWave/THz sensing and communication.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking body-surface physiological evolution via IR-temperature dual sensing with single chalcogenide fiber","authors":"Yanqing Fu, Shiliang Kang, Gangjie Zhou, Xinxiang Huang, Linling Tan, Chengwei Gao, Shixun Dai, Changgui Lin","doi":"10.1038/s41377-025-01840-y","DOIUrl":"https://doi.org/10.1038/s41377-025-01840-y","url":null,"abstract":"<p>Improvements to body-surface physiological monitoring ability including real-time, accuracy and integration, are essential to meet the expansive demands for personal healthcare. As part of this, simultaneous monitoring of sweat metabolites and body temperature offers an exciting path to maximizing diagnostic precision and minimizing morbidity rates. Herein, we report a high-performance biomarker-temperature sensor made of a single As<sub>3</sub>Se<sub>5</sub>Te<sub>2</sub> chalcogenide glass fiber to monitor physiology evolution on body-surface. The sensor integrates efficient thermal resistance and fiber evanescent wave effects, permitting the independent sensing of temperature and biomarkers with an ultrahigh temperature coefficient of resistance (−5.84% K<sup>–1</sup>), rapid temperature response (0.3 s) and excellent IR sensing sensitivity. Moreover, by attaching a fiber to the wrist, we demonstrate simultaneous observation of both sweat metabolite (urea and lactate) and temperature changes during exercise. This illuminating sensing method will provide crucial capabilities in physiological monitoring and pave the way for advanced personalized diagnostic.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deterministic resonance fluorescence improvement of single quantum dots by optimized surface passivation","authors":"Junyi Zhao, Runze Liu, Gengyan Zou, Zhenxuan Ge, Qihang Zhang, Yukun Qiao, Xing Ding, Guoqiu Jiang, Yiyang Lou, Yongpeng Guo, Tunghsun Chung, Yuming He, Chaoyang Lu, Yongheng Huo, Jianwei Pan","doi":"10.1038/s41377-025-01838-6","DOIUrl":"https://doi.org/10.1038/s41377-025-01838-6","url":null,"abstract":"<p>The degradation caused by surface states restricts the performance of near-surface semiconductor quantum dots (QDs). Here, we demonstrate optimized passivation techniques to improve the resonance fluorescence (RF) with dot-to-dot comparisons. These optimized techniques, for the first time, reduce the linewidth and noise level of existing pulsed-RF signals, as well as revive pulsed-RF signals which originally are vanishing. The improvements are confirmed to originate from reduced surface state density and electric field after passivation, through optical and surface science characterizations. Our study promotes applications of the passivation techniques in thin-film quantum devices, paving the way for the further development of optimal QD-based quantum light sources.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143857448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}