Efficient on-chip terahertz generation and detection with GaN photoconductive emitters

IF 20.6 Q1 OPTICS
Can B. Uzundal, Qixin Feng, Weichen Tang, Chen Hu, Collin Sanborn, Yoseob Yoon, Sudi Chen, Jiawei Ruan, Steven G. Louie, Feng Wang
{"title":"Efficient on-chip terahertz generation and detection with GaN photoconductive emitters","authors":"Can B. Uzundal, Qixin Feng, Weichen Tang, Chen Hu, Collin Sanborn, Yoseob Yoon, Sudi Chen, Jiawei Ruan, Steven G. Louie, Feng Wang","doi":"10.1038/s41377-025-01870-6","DOIUrl":null,"url":null,"abstract":"<p>Photoconductive emitters for terahertz generation hold promise for highly efficient down-conversion of optical photons because it is not constrained by the Manley-Rowe relation. Existing terahertz photoconductive devices, however, faces limits in efficiency due to the semiconductor properties of commonly used GaAs materials. Here, we demonstrate that large bandgap semiconductor GaN, characterized by its high breakdown electric field, facilitates the highly efficient generation of terahertz waves in a coplanar stripline waveguide. Towards this goal, we investigated the excitonic contribution to the electro-optic response of GaN under static electric field both through experiments and first-principles calculations, revealing a robust excitonic Stark shift. Using this electro-optic effect, we developed a novel ultraviolet pump-probe spectroscopy for in-situ characterization of the terahertz electric field strength generated by the GaN photoconductive emitter. Our findings show that terahertz power scales quadratically with optical excitation power and applied electric field over a broad parameter range. We achieved an optical-to-terahertz conversion efficiency approaching 100% within the 0.03–1 THz bandwidth at the highest bias field (116 kV/cm) in our experiment. Further optimization of GaN-based terahertz generation devices could achieve even greater optical-to-terahertz conversion efficiencies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"16 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01870-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Photoconductive emitters for terahertz generation hold promise for highly efficient down-conversion of optical photons because it is not constrained by the Manley-Rowe relation. Existing terahertz photoconductive devices, however, faces limits in efficiency due to the semiconductor properties of commonly used GaAs materials. Here, we demonstrate that large bandgap semiconductor GaN, characterized by its high breakdown electric field, facilitates the highly efficient generation of terahertz waves in a coplanar stripline waveguide. Towards this goal, we investigated the excitonic contribution to the electro-optic response of GaN under static electric field both through experiments and first-principles calculations, revealing a robust excitonic Stark shift. Using this electro-optic effect, we developed a novel ultraviolet pump-probe spectroscopy for in-situ characterization of the terahertz electric field strength generated by the GaN photoconductive emitter. Our findings show that terahertz power scales quadratically with optical excitation power and applied electric field over a broad parameter range. We achieved an optical-to-terahertz conversion efficiency approaching 100% within the 0.03–1 THz bandwidth at the highest bias field (116 kV/cm) in our experiment. Further optimization of GaN-based terahertz generation devices could achieve even greater optical-to-terahertz conversion efficiencies.

Abstract Image

利用氮化镓光导发射体实现片上太赫兹的高效产生和检测
由于不受曼利-罗关系的限制,用于太赫兹产生的光导发射器有望实现光子的高效下转换。然而,由于常用砷化镓材料的半导体特性,现有的太赫兹光导器件的效率受到限制。在这里,我们证明了大带隙半导体GaN,其特点是其高击穿电场,有助于在共面带状线波导中高效产生太赫兹波。为了实现这一目标,我们通过实验和第一性原理计算研究了静电场下氮化镓电光响应的激子贡献,揭示了一个强大的激子Stark位移。利用这种电光效应,我们开发了一种新的紫外泵浦探测光谱,用于原位表征GaN光导发射器产生的太赫兹电场强度。我们的研究结果表明,太赫兹功率与光激发功率和外加电场在很宽的参数范围内成二次级数。在实验中,我们在最高偏置场(116 kV/cm)下,在0.01 - 1太赫兹带宽范围内实现了接近100%的光-太赫兹转换效率。进一步优化基于氮化镓的太赫兹产生设备可以实现更高的光到太赫兹的转换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信