High momentum two-dimensional propagation of emitted photoluminescence coupled with surface lattice resonance

IF 20.6 Q1 OPTICS
Yeonjeong Koo, Dong Kyo Oh, Jungho Mun, Artem N. Abramov, Mikhail Tyugaev, Yong Bin Kim, Inki Kim, Tae Ho Kim, Sera Yang, Yeseul Kim, Jonghwan Kim, Vasily Kravtsov, Junsuk Rho, Kyoung-Duck Park
{"title":"High momentum two-dimensional propagation of emitted photoluminescence coupled with surface lattice resonance","authors":"Yeonjeong Koo, Dong Kyo Oh, Jungho Mun, Artem N. Abramov, Mikhail Tyugaev, Yong Bin Kim, Inki Kim, Tae Ho Kim, Sera Yang, Yeseul Kim, Jonghwan Kim, Vasily Kravtsov, Junsuk Rho, Kyoung-Duck Park","doi":"10.1038/s41377-025-01873-3","DOIUrl":null,"url":null,"abstract":"<p>Dramatic fluorescence enhancement in two-dimensional (2D) van der Waals materials (vdWMs) coupled to plasmonic nanostructures has the potential to enable ultrathin, flexible, and high-brightness illumination devices. However, addressing the limitation of locally scattered small plasmon-enhanced areas remains challenging. Here, we present a 2D plasmonic enhancement of photoluminescence (PL) spanning nearly 800 μm<sup>2</sup>, enabled by surface lattice resonance (SLR) in a 2D vdWM-Au slot lattice hybrid. The Au slot lattice is designed and fabricated using Babinet’s principle and Rayleigh’s anomaly to maximize radiative decay rate and induce non-local photo-excitation in a MoSe<sub>2</sub> monolayer. For emitted PL coupled with SLR, enhanced by up to 32-fold, we investigate its in-plane directivity and long-range propagation using angle- and space-resolved spectroscopic PL measurements. Our experiment reveals that a nearly 800 μm<sup>2</sup> 2D luminescent sheet can be achieved regardless of the size of the MoSe<sub>2</sub> crystal, even with a sub-μm<sup>2</sup> flake. This work provides a new type of ultrabright, large-area 2D luminescent material, suitable for a range of optical illumination, communication, and sensing devices.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"8 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01873-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dramatic fluorescence enhancement in two-dimensional (2D) van der Waals materials (vdWMs) coupled to plasmonic nanostructures has the potential to enable ultrathin, flexible, and high-brightness illumination devices. However, addressing the limitation of locally scattered small plasmon-enhanced areas remains challenging. Here, we present a 2D plasmonic enhancement of photoluminescence (PL) spanning nearly 800 μm2, enabled by surface lattice resonance (SLR) in a 2D vdWM-Au slot lattice hybrid. The Au slot lattice is designed and fabricated using Babinet’s principle and Rayleigh’s anomaly to maximize radiative decay rate and induce non-local photo-excitation in a MoSe2 monolayer. For emitted PL coupled with SLR, enhanced by up to 32-fold, we investigate its in-plane directivity and long-range propagation using angle- and space-resolved spectroscopic PL measurements. Our experiment reveals that a nearly 800 μm2 2D luminescent sheet can be achieved regardless of the size of the MoSe2 crystal, even with a sub-μm2 flake. This work provides a new type of ultrabright, large-area 2D luminescent material, suitable for a range of optical illumination, communication, and sensing devices.

Abstract Image

发射光致发光与表面晶格共振耦合的高动量二维传播
二维(2D)范德华材料(vdWMs)与等离子体纳米结构耦合的显著荧光增强具有实现超薄、柔性和高亮度照明器件的潜力。然而,解决局部散射小等离子体增强区域的局限性仍然具有挑战性。在这里,我们提出了一个二维等离子体增强光致发光(PL),跨越近800 μm2,由表面晶格共振(SLR)在二维vdWM-Au槽晶格杂化实现。利用Babinet原理和Rayleigh异常设计和制作了Au槽晶格,以最大限度地提高MoSe2单层的辐射衰减率并诱导非局部光激发。对于与单反耦合的发射PL,增强了32倍,我们使用角分辨和空间分辨光谱PL测量来研究其面内指向性和远程传播。我们的实验表明,无论MoSe2晶体的大小,甚至是亚μm2的薄片,都可以获得近800 μm2的二维发光片。这项工作提供了一种新型的超亮、大面积二维发光材料,适用于各种光学照明、通信和传感设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信