MetaSeeker: sketching an open invisible space with self-play reinforcement learning

IF 20.6 Q1 OPTICS
Bei Wu, Chao Qian, Zhedong Wang, Pujing Lin, Erping Li, Hongsheng Chen
{"title":"MetaSeeker: sketching an open invisible space with self-play reinforcement learning","authors":"Bei Wu, Chao Qian, Zhedong Wang, Pujing Lin, Erping Li, Hongsheng Chen","doi":"10.1038/s41377-025-01876-0","DOIUrl":null,"url":null,"abstract":"<p>Controlling electromagnetic (EM) waves at will is fundamentally important for diverse applications, ranging from optical microcavities, super-resolution imaging, to quantum information processing. Decades ago, the forays into metamaterials and transformation optics have ignited unprecedented interest to create an invisibility cloak—a closed space with any object inside invisible. However, all features of the scattering waves become stochastic and uncontrollable when EM waves interact with an open and disordered environment, making an open invisible space almost impossible. Counterintuitively, here we for the first time present <i>an open, cluttered, and dynamic</i> but invisible space, wherein any freely-moving object maintains invisible. To adapt to the disordered environment, we randomly organize a swarm of reconfigurable metasurfaces, and master them by MetaSeeker, a population-based reinforcement learning (RL). MetaSeeker constructs a narcissistic internal world to mirror the stochastic physical world, capable of autonomous preferment, evolution, and adaptation. In the perception-decision-execution experiment, multiple RL agents automatically interact with the ever-changing environments and integrate a post-hoc explainability to visualize the decision-making process. The hidden objects, such as vehicle cluster and experimenter, can freely scale, race, and track in the invisible space, with the environmental similarity of 99.5%. Our results constitute a monumental stride to reshape the evolutionary landscape of metasurfaces from individual to swarm intelligence and usher in the remote management of entire EM space.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"6 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01876-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling electromagnetic (EM) waves at will is fundamentally important for diverse applications, ranging from optical microcavities, super-resolution imaging, to quantum information processing. Decades ago, the forays into metamaterials and transformation optics have ignited unprecedented interest to create an invisibility cloak—a closed space with any object inside invisible. However, all features of the scattering waves become stochastic and uncontrollable when EM waves interact with an open and disordered environment, making an open invisible space almost impossible. Counterintuitively, here we for the first time present an open, cluttered, and dynamic but invisible space, wherein any freely-moving object maintains invisible. To adapt to the disordered environment, we randomly organize a swarm of reconfigurable metasurfaces, and master them by MetaSeeker, a population-based reinforcement learning (RL). MetaSeeker constructs a narcissistic internal world to mirror the stochastic physical world, capable of autonomous preferment, evolution, and adaptation. In the perception-decision-execution experiment, multiple RL agents automatically interact with the ever-changing environments and integrate a post-hoc explainability to visualize the decision-making process. The hidden objects, such as vehicle cluster and experimenter, can freely scale, race, and track in the invisible space, with the environmental similarity of 99.5%. Our results constitute a monumental stride to reshape the evolutionary landscape of metasurfaces from individual to swarm intelligence and usher in the remote management of entire EM space.

Abstract Image

MetaSeeker:通过自我游戏强化学习绘制一个开放的无形空间
随意控制电磁波对于各种应用至关重要,从光学微腔、超分辨率成像到量子信息处理。几十年前,对超材料和变形光学的探索激发了人们创造隐形斗篷的空前兴趣——一种封闭的空间,里面的任何物体都是隐形的。然而,当电磁波与开放无序的环境相互作用时,散射波的所有特征都变得随机和不可控,使得开放的不可见空间几乎不可能存在。与直觉相反,在这里我们第一次呈现了一个开放、杂乱、动态但不可见的空间,其中任何自由移动的物体都保持不可见。为了适应无序的环境,我们随机组织了一群可重构的元表面,并通过基于群体的强化学习(RL) MetaSeeker来掌握它们。MetaSeeker构建了一个自恋的内部世界来反映随机的物理世界,能够自主提升、进化和适应。在感知-决策-执行实验中,多个强化学习代理自动与不断变化的环境交互,并整合事后可解释性以可视化决策过程。隐藏对象,如车辆集群和实验者,可以在不可见空间中自由缩放、比赛和跟踪,环境相似度为99.5%。我们的研究成果在重塑从个体智能到群体智能的超表面进化格局方面迈出了巨大的一步,并引领了整个EM空间的远程管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信