High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure

IF 20.6 Q1 OPTICS
Tongxin Jiang, Sijie Li, Wenlong Yao, Lu Han, Lei Zhang, Xue Li, Lifeng Zhang, Xian Tang, Xin Li, Haisheng San
{"title":"High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure","authors":"Tongxin Jiang, Sijie Li, Wenlong Yao, Lu Han, Lei Zhang, Xue Li, Lifeng Zhang, Xian Tang, Xin Li, Haisheng San","doi":"10.1038/s41377-025-01875-1","DOIUrl":null,"url":null,"abstract":"<p>Radio-photovoltaic cells (RPVCs) are able to offer high reliability and extended operational lifetimes, making them ideal for harsh-environment applications. However, the two-stage energy conversion process inherently limits energy conversion efficiency (ECE). This study presents a novel RPVC design based on a waveguide light concentration (WLC) scheme, employing multilayer-stacked GAGG:Ce scintillation waveguides alternately loaded with <sup>90</sup>Sr radioisotope sources. Electron beam irradiation tests revealed highly efficient radioluminescence (RL) emission from the edge surfaces of GAGG:Ce waveguide at electron energies exceeding 60 keV. A RPVC prototype incorporating 1.43 Ci of ⁹⁰Sr achieved a maximum output power (<i>P</i><sub>max</sub>) of 48.9 μW, with an unprecedented ECE of 2.96%—the highest reported value for radioisotope-powered RPVCs to date. Furthermore, a multi-module integrated RPVC prototype demonstrated a <i>P</i><sub>max</sub> of 3.17 mW, with a short circuit current of 2.23 mA and an open circuit voltage of 2.14 V. Remarkably, the device exhibited only 13.8% RL performance degradation after a 50-year equivalent electron beam irradiation (total fluence: 5.625 × 10<sup>18</sup> e/cm<sup>2</sup>), confirming exceptional radiation hardness. These findings demonstrate that the WLC-based RPVCs achieve both high power output and exceptional long-term stability, representing a substantial advancement for facilitating nuclear battery applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"174 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01875-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Radio-photovoltaic cells (RPVCs) are able to offer high reliability and extended operational lifetimes, making them ideal for harsh-environment applications. However, the two-stage energy conversion process inherently limits energy conversion efficiency (ECE). This study presents a novel RPVC design based on a waveguide light concentration (WLC) scheme, employing multilayer-stacked GAGG:Ce scintillation waveguides alternately loaded with 90Sr radioisotope sources. Electron beam irradiation tests revealed highly efficient radioluminescence (RL) emission from the edge surfaces of GAGG:Ce waveguide at electron energies exceeding 60 keV. A RPVC prototype incorporating 1.43 Ci of ⁹⁰Sr achieved a maximum output power (Pmax) of 48.9 μW, with an unprecedented ECE of 2.96%—the highest reported value for radioisotope-powered RPVCs to date. Furthermore, a multi-module integrated RPVC prototype demonstrated a Pmax of 3.17 mW, with a short circuit current of 2.23 mA and an open circuit voltage of 2.14 V. Remarkably, the device exhibited only 13.8% RL performance degradation after a 50-year equivalent electron beam irradiation (total fluence: 5.625 × 1018 e/cm2), confirming exceptional radiation hardness. These findings demonstrate that the WLC-based RPVCs achieve both high power output and exceptional long-term stability, representing a substantial advancement for facilitating nuclear battery applications.

Abstract Image

基于波导光集中结构的高效90Sr射电光伏电池
无线电光伏电池(RPVCs)能够提供高可靠性和延长的使用寿命,使其成为恶劣环境应用的理想选择。然而,两阶段的能量转换过程固有地限制了能量转换效率(ECE)。本研究提出了一种基于波导光浓度(WLC)方案的新型RPVC设计,采用多层堆叠的GAGG:Ce闪烁波导交替加载90Sr放射性同位素源。电子束辐照实验表明,在电子能量超过60 keV的情况下,GAGG:Ce波导边缘表面产生了高效的辐射发光(RL)。一个包含1.43 Ci(9⁰Sr)的RPVC原型实现了48.9 μW的最大输出功率(Pmax),具有前所未有的2.96%的ECE,这是迄今为止放射性同位素动力RPVC的最高报告值。此外,多模块集成RPVC样机的Pmax为3.17 mW,短路电流为2.23 mA,开路电压为2.14 V。值得注意的是,经过50年的等效电子束照射(总通量:5.625 × 1018 e/cm2),该器件的RL性能仅下降13.8%,证实了特殊的辐射硬度。这些发现表明,基于wlc的RPVCs实现了高功率输出和卓越的长期稳定性,代表了促进核电池应用的实质性进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信