{"title":"Scalable miniature on-chip Fourier transform spectrometer for Raman spectroscopy","authors":"Sarp Kerman, Xiao Luo, Zuoqin Ding, Zhewei Zhang, Zhuo Deng, Xiaofei Qin, Yuran Xu, Shuhua Zhai, Chang Chen","doi":"10.1038/s41377-025-01861-7","DOIUrl":null,"url":null,"abstract":"<p>Miniaturized spectrometers for Raman spectroscopy have the potential to open up a new chapter in sensing. Raman spectroscopy is essential for material characterization and biomedical diagnostics, however, its weak signal and the need for sub-nanometer resolution pose challenges. Conventional spectrometers, with footprints proportional to optical throughput and resolution, are difficult to integrate into compact devices such as wearables. Waveguide-based Fourier Transform Spectrometers (FTS) enable compact spectrometers, and multi-aperture designs can achieve high throughput for applications such as Raman spectroscopy; however, experimental research in this domain remains limited. In this work, we present a multi-aperture SiN waveguide-based FTS overcoming these limitations and enabling Raman spectroscopy of isopropyl alcohol, glucose, Paracetamol, and Ibuprofen with enhanced throughput. Our spectrometer chip, fabricated on a 200 mm SiN wafer, with 160 edge-coupled waveguide apertures connected to an array of ultra-compact interferometers and a small footprint of just 1.6 mm × 3.2 mm, achieves a spectral range of 40 nm and a resolution of 0.5 nm. Experimental results demonstrate that the least absolute shrinkage and selection operator (LASSO) regression significantly enhances Raman spectrum reconstruction. Our work on waveguide-based spectrometry paves the way for integrating accurate and compact Raman sensors into consumer electronics and space exploration instruments.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"105 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01861-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Miniaturized spectrometers for Raman spectroscopy have the potential to open up a new chapter in sensing. Raman spectroscopy is essential for material characterization and biomedical diagnostics, however, its weak signal and the need for sub-nanometer resolution pose challenges. Conventional spectrometers, with footprints proportional to optical throughput and resolution, are difficult to integrate into compact devices such as wearables. Waveguide-based Fourier Transform Spectrometers (FTS) enable compact spectrometers, and multi-aperture designs can achieve high throughput for applications such as Raman spectroscopy; however, experimental research in this domain remains limited. In this work, we present a multi-aperture SiN waveguide-based FTS overcoming these limitations and enabling Raman spectroscopy of isopropyl alcohol, glucose, Paracetamol, and Ibuprofen with enhanced throughput. Our spectrometer chip, fabricated on a 200 mm SiN wafer, with 160 edge-coupled waveguide apertures connected to an array of ultra-compact interferometers and a small footprint of just 1.6 mm × 3.2 mm, achieves a spectral range of 40 nm and a resolution of 0.5 nm. Experimental results demonstrate that the least absolute shrinkage and selection operator (LASSO) regression significantly enhances Raman spectrum reconstruction. Our work on waveguide-based spectrometry paves the way for integrating accurate and compact Raman sensors into consumer electronics and space exploration instruments.