Journal of Functional Biomaterials最新文献

筛选
英文 中文
Experimental Analysis of Stress Shielding Effects in Screw Spacers Placed in Porcine Spinal Tissue. 放置在猪脊柱组织中的螺钉垫片应力屏蔽效应的实验分析
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-22 DOI: 10.3390/jfb15080238
Elliot Alonso Alcántara-Arreola, Karla Nayeli Silva-Garcés, Jocabed Mendoza-Martínez, Miguel Antonio Cardoso-Palomares, Christopher René Torres-SanMiguel
{"title":"Experimental Analysis of Stress Shielding Effects in Screw Spacers Placed in Porcine Spinal Tissue.","authors":"Elliot Alonso Alcántara-Arreola, Karla Nayeli Silva-Garcés, Jocabed Mendoza-Martínez, Miguel Antonio Cardoso-Palomares, Christopher René Torres-SanMiguel","doi":"10.3390/jfb15080238","DOIUrl":"10.3390/jfb15080238","url":null,"abstract":"<p><p>Bone cortical tissues reorganize and remodel in response to tensile forces acting on them, while compressive forces cause atrophy. However, implants support most of the payload. Bones do not regenerate, and stress shielding occurs. The aim is to analyze the biomechanical behavior of a lumbar cage to study the implant's stress shielding. The ASTM E-9 standard was used with the necessary adjustments to perform compression tests on lumbar and thoracic porcine spinal vertebrae. Twelve cases were analyzed: six with the metal prosthesis and six with the PEEK implant. A mathematical model based on the Hertz contact theory is proposed to assess the stress shielding for endoprosthesis used in spine pathologies. The lumbar spacer (screw) helps to reduce the stress shielding effect due to the ACME thread. The best interspinous spacer is the PEEK screw. It does not embed in bone. The deformation capability increases by 11.5% and supports 78.6 kg more than a system without any interspinous spacer.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature Changes (ΔT) in Correlation with Number of Implant Osteotomy Preparations in Human Cadaver Tibiae, Comparing Osseodensification (OD) Burs in Clockwise (CW) versus Counterclockwise (CCW) Mode. 比较顺时针 (CW) 和逆时针 (CCW) 模式下的骨增硬 (OD) 车针,人体尸体胫骨中温度变化 (ΔT)与植入物截骨制备次数的相关性。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-22 DOI: 10.3390/jfb15080237
Nikolaos Soldatos, Amanda Heydari, LeRoy Horton, Shayda Sarrami, Luke Nordlie, Dongseok Choi, Robin Weltman
{"title":"Temperature Changes (Δ<i>T</i>) in Correlation with Number of Implant Osteotomy Preparations in Human Cadaver Tibiae, Comparing Osseodensification (OD) Burs in Clockwise (CW) versus Counterclockwise (CCW) Mode.","authors":"Nikolaos Soldatos, Amanda Heydari, LeRoy Horton, Shayda Sarrami, Luke Nordlie, Dongseok Choi, Robin Weltman","doi":"10.3390/jfb15080237","DOIUrl":"10.3390/jfb15080237","url":null,"abstract":"<p><p>(1) Background: OD burs are used in two different modes: (i) CW and (ii) CCW. The purpose of the study was to evaluate the Δ<i>T</i> during the preparation of implant osteotomies in a four-way interaction. (2) Methods: Three hundred and sixty osteotomies were prepared at 12 mm depth in human cadaver tibiae. The Δ<i>T</i> values were calculated similarly to the method used in two previous studies carried out by our group. Four different variables were evaluated for their effect on Δ<i>T</i>. (3) Results: A four-way interaction was observed in the CCW mode, allowing for 1000 RPM to have the least effect in both modes. However, in the CCW mode the use of 3.0 and 4.0 burs after 23 osteotomies showed a statistically significant increase in Δ<i>T,</i> and significant chatter, compared to the CW mode. In the CCW mode, the Δ<i>T</i> was increased significantly as the diameter of the burs increased in 800 and 1200 RPM. (4) Conclusions: The synergistic effect of drills' diameter, CCW mode, 800 and 1200 RPM, and bur usage (over 23 times) had a significant effect on Δ<i>T</i>, which exceeded 47 °C. One thousand (1000) RPM had the least effect in both modes. The 3.0 and 4.0 burs in the CCW mode drastically increased the temperature and produced significant chatter.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions. 利用骨表面曲率分布表征骨小梁微结构和力学性能
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-22 DOI: 10.3390/jfb15080239
Pengwei Xiao, Caroline Schilling, Xiaodu Wang
{"title":"Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions.","authors":"Pengwei Xiao, Caroline Schilling, Xiaodu Wang","doi":"10.3390/jfb15080239","DOIUrl":"10.3390/jfb15080239","url":null,"abstract":"<p><p>Understanding bone surface curvatures is crucial for the advancement of bone material design, as these curvatures play a significant role in the mechanical behavior and functionality of bone structures. Previous studies have demonstrated that bone surface curvature distributions could be used to characterize bone geometry and have been proposed as key parameters for biomimetic microstructure design and optimization. However, understanding of how bone surface curvature distributions correlate with bone microstructure and mechanical properties remains limited. This study hypothesized that bone surface curvature distributions could be used to predict the microstructure as well as mechanical properties of trabecular bone. To test the hypothesis, a convolutional neural network (CNN) model was trained and validated to predict the histomorphometric parameters (e.g., BV/TV, BS, Tb.Th, DA, Conn.D, and SMI), geometric parameters (e.g., plate area PA, plate thickness PT, rod length RL, rod diameter RD, plate-to-plate nearest neighbor distance NND<sub>PP</sub>, rod-to-rod nearest neighbor distance NND<sub>RR</sub>, plate number PN, and rod number RN), as well as the apparent stiffness tensor of trabecular bone using various bone surface curvature distributions, including maximum principal curvature distribution, minimum principal curvature distribution, Gaussian curvature distribution, and mean curvature distribution. The results showed that the surface curvature distribution-based deep learning model achieved high fidelity in predicting the major histomorphometric parameters and geometric parameters as well as the stiffness tenor of trabecular bone, thus supporting the hypothesis of this study. The findings of this study underscore the importance of incorporating bone surface curvature analysis in the design of synthetic bone materials and implants.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan-Stabilized Selenium Nanoparticles Alleviate High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease (NAFLD) by Modulating the Gut Barrier Function and Microbiota. 壳聚糖稳定硒纳米粒子通过调节肠道屏障功能和微生物群缓解高脂饮食诱发的非酒精性脂肪肝(NAFLD)
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-22 DOI: 10.3390/jfb15080236
Yuhang Luo, Shujiang Peng, Jintao Cheng, Hongli Yang, Lin Lin, Guiling Yang, Yuanxiang Jin, Qingchi Wang, Zhengshun Wen
{"title":"Chitosan-Stabilized Selenium Nanoparticles Alleviate High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease (NAFLD) by Modulating the Gut Barrier Function and Microbiota.","authors":"Yuhang Luo, Shujiang Peng, Jintao Cheng, Hongli Yang, Lin Lin, Guiling Yang, Yuanxiang Jin, Qingchi Wang, Zhengshun Wen","doi":"10.3390/jfb15080236","DOIUrl":"10.3390/jfb15080236","url":null,"abstract":"<p><p>Low molecular weight chitosan selenium nanoparticles (LCS-SeNPs), a biologically active compound derived from selenium polysaccharides, have demonstrated potential in addressing obesity. However, the mechanism through which LCS-SeNPs alleviate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) remains unclear. Our results elucidated that LCS-SeNPs significantly inhibited fat accumulation and markedly improved the intestinal barrier by increasing mucus secretion from goblet cells. Moreover, LCS-SeNPs reshaped intestinal flora composition by increasing the abundance of mucus-associated microbiota (<i>Bifidobacterium</i>, <i>Akkermansia</i>, and <i>Muribaculaceae_unclassified</i>) and decreasing the abundance of obesity-contributed bacterium (<i>Anaerotruncus</i>, <i>Lachnoclostridium</i>, and <i>Proteus</i>). The modulation of intestinal microbiota by LCS-SeNPs influenced several metabolic pathways, including bile acid secretion, purine metabolites, and tryptophan derivation. Meanwhile, glycocholic acid and tauro-beta-muricholic acid were significantly reduced in the LCS-SeNP group. Our study suggests the crucial role of intestinal microbiota composition and metabolism, providing a new theoretical foundation for utilizing selenium polysaccharides in the intervention of HFD-induced NAFLD.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Assessment of Denture Polymers Processing Technologies. 义齿聚合物加工技术的机械评估。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-21 DOI: 10.3390/jfb15080234
Cristina Modiga, Andreea Stoia, Marius Traian Leretter, Ana Codruţa Chiş, Andreea-Violeta Ardelean, Edward-Ronald Azar, Gabriel Kapor, Daniela-Maria Pop, Mihai Romînu, Cosmin Sinescu, Meda-Lavinia Negruţiu, Emanuela-Lidia Petrescu
{"title":"Mechanical Assessment of Denture Polymers Processing Technologies.","authors":"Cristina Modiga, Andreea Stoia, Marius Traian Leretter, Ana Codruţa Chiş, Andreea-Violeta Ardelean, Edward-Ronald Azar, Gabriel Kapor, Daniela-Maria Pop, Mihai Romînu, Cosmin Sinescu, Meda-Lavinia Negruţiu, Emanuela-Lidia Petrescu","doi":"10.3390/jfb15080234","DOIUrl":"10.3390/jfb15080234","url":null,"abstract":"<p><strong>Background: </strong>Removable prostheses have seen a fundamental change recently because of advances in polymer materials, allowing improved durability and performance. Despite these advancements, notable differences still occur amongst various polymer materials and processing technologies, requiring a thorough grasp of their mechanical, physical, and therapeutic implications. The compressive strength of dentures manufactured using various technologies will be investigated.</p><p><strong>Methods: </strong>Traditional, injection molding, and additive and subtractive CAD/CAM processing techniques, all utilizing Polymethyl methacrylate (PMMA) as the main material, were used to construct complete dentures. The specimens underwent a compressive mechanical test, which reveals the differences in compressive strength.</p><p><strong>Results: </strong>All the specimens broke under the influence of a certain force, rather than yielding through flow, as is characteristic for plastic materials. For each specimen, the maximum force (N) was recorded, as well as the breaking energy. The mean force required to break the dentures for each processing technology is as follows: 4.54 kN for traditional packing-press technique, 17.92 kN for the injection molding technique, 1.51 kN for the additive CAD/CAM dentures, and 5.9 kN for the subtractive CAD/CAM dentures.</p><p><strong>Conclusions: </strong>The best results were obtained in the case of the thermoplastic injection system and the worst results were recorded in the case of 3D printed samples. Another important aspect depicted is the standard deviation for each group, which reveal a relatively unstable property for the thermoplastic injected dentures. Good results here in terms of absolute property and stability of the property can be conferred to CAD/CAM milled group.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lymphatic Regeneration after Popliteal Lymph Node Excision and Implantation of Aligned Nanofibrillar Collagen Scaffolds: An Experimental Rabbit Model. 腘窝淋巴结切除和对齐纳米纤维胶原支架植入后的淋巴再生:兔子实验模型
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-21 DOI: 10.3390/jfb15080235
José Luis Campos, Gemma Pons, Ali M Al-Sakkaf, Irene Laura Lusetti, Laura Pires, Francisco Javier Vela, Elena Ramos, Verónica Crisóstomo, Francisco Miguel Sánchez-Margallo, Elena Abellán, Jaume Masiá
{"title":"Lymphatic Regeneration after Popliteal Lymph Node Excision and Implantation of Aligned Nanofibrillar Collagen Scaffolds: An Experimental Rabbit Model.","authors":"José Luis Campos, Gemma Pons, Ali M Al-Sakkaf, Irene Laura Lusetti, Laura Pires, Francisco Javier Vela, Elena Ramos, Verónica Crisóstomo, Francisco Miguel Sánchez-Margallo, Elena Abellán, Jaume Masiá","doi":"10.3390/jfb15080235","DOIUrl":"10.3390/jfb15080235","url":null,"abstract":"<p><p>Lymphedema presents significant challenges to patients' quality of life, prompting the exploration of innovative treatments, such as collagen scaffolds, aimed at treating and reducing the risk of lymphedema. We aimed to evaluate the preventive and therapeutic efficacy and the lymphangiogenic potential of implanted aligned nanofibrillar collagen scaffolds (BioBridge<sup>TM</sup>) following the induction of secondary lymphedema in a rabbit model. Thirty rabbits were divided into treatment (G1), prevention (G2), and control (G3) groups. Secondary lymphedema was induced in all groups. BioBridge<sup>TM</sup> implantation was performed in G2 and G1 on days 0 and 60, respectively. Follow-ups included hindlimb circumference measurements and indocyanine green lymphography at 0, 60, and 90 days. None of the study rabbits exhibited dermal backflow on day 0 before surgery. At 60 days, the incidence rates of dermal backflow in G1, G2, and G3 were 100%, 44.4%, and 90%, respectively. Furthermore, at 90 days, the incidence rates were 22.2%, 44.4%, and 90%, respectively. New linear lymphatic observation was seen in rabbits with resolved dermal backflow. The findings of this study demonstrated the capacity of BioBridge<sup>TM</sup> scaffolds to induce new lymphatic vessel formation and reduce dermal backflow in secondary lymphedema in a rabbit model.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomaterial Scaffolds for Periodontal Tissue Engineering. 用于牙周组织工程的生物材料支架。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-20 DOI: 10.3390/jfb15080233
Huanhuan Chen, Guangying Song, Tianmin Xu, Chenda Meng, Yunfan Zhang, Tianyi Xin, Tingting Yu, Yifan Lin, Bing Han
{"title":"Biomaterial Scaffolds for Periodontal Tissue Engineering.","authors":"Huanhuan Chen, Guangying Song, Tianmin Xu, Chenda Meng, Yunfan Zhang, Tianyi Xin, Tingting Yu, Yifan Lin, Bing Han","doi":"10.3390/jfb15080233","DOIUrl":"10.3390/jfb15080233","url":null,"abstract":"<p><p>Advanced periodontitis poses a significant threat to oral health, causing extensive damage and loss of both hard and soft periodontal tissues. While traditional therapies such as scaling and root planing can effectively halt the disease's progression, they often fail to fully restore the original architecture and function of periodontal tissues due to the limited capacity for spontaneous regeneration. To address this challenge, periodontal tissue engineering has emerged as a promising approach. This technology centers on the utilization of biomaterial scaffolds, which function as three-dimensional (3D) templates or frameworks, supporting and guiding the regeneration of periodontal tissues, including the periodontal ligament, cementum, alveolar bone, and gingival tissue. These scaffolds mimic the extracellular matrix (ECM) of native periodontal tissues, aiming to foster cell attachment, proliferation, differentiation, and, ultimately, the formation of new, functional periodontal structures. Despite the inherent challenges associated with preclinical testing, the intensification of research on biomaterial scaffolds, coupled with the continuous advancement of fabrication technology, leads us to anticipate a significant expansion in their application for periodontal tissue regeneration. This review comprehensively covers the recent advancements in biomaterial scaffolds engineered specifically for periodontal tissue regeneration, aiming to provide insights into the current state of the field and potential directions for future research.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Evaluation of the Cytocompatibility of Endodontic Bioceramics in Human Periodontal-Ligament-Derived Cells. 评估牙髓生物陶瓷在人类牙周韧带衍生细胞中的细胞相容性。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-19 DOI: 10.3390/jfb15080231
Asuka Aka, Takashi Matsuura, Atsutoshi Yoshimura
{"title":"An Evaluation of the Cytocompatibility of Endodontic Bioceramics in Human Periodontal-Ligament-Derived Cells.","authors":"Asuka Aka, Takashi Matsuura, Atsutoshi Yoshimura","doi":"10.3390/jfb15080231","DOIUrl":"10.3390/jfb15080231","url":null,"abstract":"<p><p>The present study evaluated the cytocompatibility of three endodontic bioceramics in human periodontal-ligament-derived cells (hPDLCs): MTA Repair HP (HP), MTA Flow White (F), and Nishika Canal Sealer BG multi (BG). In addition, we also evaluated the effect of the powder-liquid (paste) ratio of F and BG on cytocompatibility. Discs of endodontic bioceramics (diameter = 8 mm, thickness = 1 mm) were prepared with HP, F, and BG. hPDLCs obtained from extracted teeth and cultured for three to five passages were used in the experiment. The prepared discs were placed at the bottom of a 48-well plate, seeded with hPDLCs at 100,000 cells/well, cultured for 7 or 28 days, and subjected to a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. hPDLCs cultured without any discs were used as a negative control (NC) group. Discs made of F or BG mixed in three different consistencies were also used in this experiment. The absorbance values at days 7 and 28 were high in the order of HP > NC > BG > F. Furthermore, F or BG with higher consistency showed higher absorbance values. MTA Repair HP had the highest cytocompatibility among the three materials. Furthermore, it also showed that higher consistency improved cytocompatibility.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surgery Combined with Local Implantation of Doxorubicin-Functionalized Hydroxyapatite Halts Tumor Growth and Prevents Bone Destruction in an Aggressive Osteosarcoma. 手术结合局部植入多柔比星功能化羟磷灰石可阻止肿瘤生长并防止侵袭性骨肉瘤的骨质破坏。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-19 DOI: 10.3390/jfb15080232
Yang Liu, Tova Corbascio, Jintian Huang, Jacob Engellau, Lars Lidgren, Magnus Tägil, Deepak Bushan Raina
{"title":"Surgery Combined with Local Implantation of Doxorubicin-Functionalized Hydroxyapatite Halts Tumor Growth and Prevents Bone Destruction in an Aggressive Osteosarcoma.","authors":"Yang Liu, Tova Corbascio, Jintian Huang, Jacob Engellau, Lars Lidgren, Magnus Tägil, Deepak Bushan Raina","doi":"10.3390/jfb15080232","DOIUrl":"10.3390/jfb15080232","url":null,"abstract":"<p><p>Osteosarcoma treatment comprises pre-surgical chemotherapy followed by radical surgery and further chemotherapy cycles, but the prognosis has been far from satisfactory. No new drugs or treatment modalities have been developed for clinical use in the last four decades. We describe a nano-hydroxyapatite (HA)-based local drug delivery platform for the delivery of doxorubicin (DOX), a cornerstone drug in osteosarcoma treatment. The efficacy of the developed drug delivery system was evaluated in an orthotopic human osteosarcoma xenograft in the proximal tibia of mice. After tumor development, the tumor was surgically resected and the void filled with the following: (1) No treatment (G1); (2) nHA only (G2); (3) DOX-loaded nHA (G3). In-vivo tumor response was assessed by evaluating the tumor-induced osteolysis at 2 weeks using micro-CT followed by in-vivo PET-CT at 3 weeks and ex-vivo micro-CT and histology. Micro-CT imaging revealed complete destruction of the tibial metaphysis in groups G1 and G2, while the metaphysis was protected from osteolysis in G3. PET-CT imaging using <sup>18</sup>F-FDG revealed high metabolic activity in the tumors in G1 and G2, which was significantly reduced in G3. Using histology, we were able to verify that local DOX delivery reduced the bone destruction and the tumor burden compared with G1 and G2. No off-target toxicity in the vital organs could be observed in any of the treatment groups histologically. This study describes a novel local drug adjuvant delivery approach that could potentially improve the prognosis for patients responding poorly to the current osteosarcoma treatment.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Proliferation, Chondrogenic Differentiation, and Cartilaginous Tissue Formation in Recombinant Silk Fibroin with Basic Fibroblast Growth Factor Binding Peptide. 含有碱性成纤维细胞生长因子结合肽的重组蚕丝纤维素的细胞增殖、软骨分化和软骨组织形成
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-08-17 DOI: 10.3390/jfb15080230
Manabu Yamada, Arata Nakajima, Kayo Sakurai, Yasushi Tamada, Koichi Nakagawa
{"title":"Cell Proliferation, Chondrogenic Differentiation, and Cartilaginous Tissue Formation in Recombinant Silk Fibroin with Basic Fibroblast Growth Factor Binding Peptide.","authors":"Manabu Yamada, Arata Nakajima, Kayo Sakurai, Yasushi Tamada, Koichi Nakagawa","doi":"10.3390/jfb15080230","DOIUrl":"10.3390/jfb15080230","url":null,"abstract":"<p><p>Regeneration of articular cartilage remains a challenge for patients who have undergone cartilage injury, osteochondritis dissecans and osteoarthritis. Here, we describe a new recombinant silk fibroin with basic fibroblast growth factor (bFGF) binding peptide, which has a genetically introduced sequence PLLQATLGGGS, named P7. In this study, we cultured a human mesenchymal cell line derived from bone marrow, UE6E7-16, in wild-type fibroin sponge (FS) and recombinant silk fibroin sponge with P7 peptide (P7 FS). We compared cell proliferation, chondrogenic differentiation and cartilaginous tissue formation between the two types of sponge. After stimulation with bFGF at 3 ng/mL, P7 FS showed significantly higher cell growth (1.2-fold) and higher cellular DNA content (5.6-fold) than did wild-type FS. To promote chondrogenic differentiation, cells were cultured in the presence of TGF-β at 10 ng/mL for 28 days. Immunostaining of P7 FS showed SOX9-positive cells comparable to wild-type FS. Alcian-Blue staining of P7 FS also showed cartilaginous tissue formation equivalent to wild-type FS. A significant increase in cell proliferation in P7 FS implies future clinical application of this transgenic fibroin for regeneration of articular cartilage. To produce cartilaginous tissue efficiently, transgenic fibroin sponges and culture conditions must be improved. Such changes should include the selection of growth factors involved in chondrogenic differentiation and cartilage formation.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信