Sebastian Hetzler, Carina Hinzen, Stefan Rues, Clemens Schmitt, Peter Rammelsberg, Andreas Zenthöfer
{"title":"Biaxial Flexural Strength and Vickers Hardness of 3D-Printed and Milled 5Y Partially Stabilized Zirconia.","authors":"Sebastian Hetzler, Carina Hinzen, Stefan Rues, Clemens Schmitt, Peter Rammelsberg, Andreas Zenthöfer","doi":"10.3390/jfb16010036","DOIUrl":"10.3390/jfb16010036","url":null,"abstract":"<p><p>This study compares the mechanical properties of 5-mol% yttria partially stabilized zirconia (5Y-PSZ) materials, designed for 3D printing or milling. Three 5Y-PSZ materials were investigated: printed zirconia (PZ) and two milled zirconia materials, VITA-YZ-XT (MZ-1) and Cercon xt (MZ-2). PZ samples were made from a novel ceramic suspension via digital light processing and divided into three subgroups: PZ-HN-ZD (horizontal nesting, printed with Zipro-D Dental), PZ-VN-Z (vertical nesting, printed with Zipro-D Dental) and PZ-VN-Z (vertical nesting, printed with Zipro Dental). Key outcomes included biaxial flexural strength (ISO 6872) and Vickers hardness (<i>n</i> ≥ 23 samples/subgroup). Microstructure and grain size were analyzed using light and scanning electron microscopy. Printed specimens exhibited biaxial flexural strengths of 1059 ± 178 MPa (PZ-HN-ZD), 797 ± 135 MPa (PZ-VN-ZD), and 793 ± 75 MPa (PZ-VN-Z). Milled samples showed strengths of 745 ± 96 MPa (MZ-1) and 928 ± 87 MPa (MZ-2). Significant differences (α = 0.05) were observed, except between vertically printed groups and MZ-1. Vickers hardness was highest for PZ-VN-Z (HV0.5 = 1590 ± 24), followed by MZ-1 (HV0.5 = 1577 ± 9) and MZ-2 (HV0.5 = 1524 ± 4), with significant differences, except between PZ and MZ-1. PZ samples had the smallest grain size (0.744 ± 0.024 µm) compared to MZ-1 (0.820 ± 0.042 µm) and MZ-2 (1.023 ± 0.081 µm). All materials met ISO 6872 standards for crowns and three-unit prostheses in posterior regions.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas R Fuerst, Alexander Marin, Sarah Jeong, Liudmila Kulakova, Raman Hlushko, Katrina Gorga, Eric A Toth, Nevil J Singh, Alexander K Andrianov
{"title":"Virus-Mimicking Polymer Nanocomplexes Co-Assembling HCV E1E2 and Core Proteins with TLR 7/8 Agonist-Synthesis, Characterization, and In Vivo Activity.","authors":"Thomas R Fuerst, Alexander Marin, Sarah Jeong, Liudmila Kulakova, Raman Hlushko, Katrina Gorga, Eric A Toth, Nevil J Singh, Alexander K Andrianov","doi":"10.3390/jfb16010034","DOIUrl":"10.3390/jfb16010034","url":null,"abstract":"<p><p>Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle. The resulting assemblies were characterized using dynamic light scattering and asymmetric flow field-flow fractionation methods and directly visualized in their vitrified state by cryogenic electron microscopy. The in vivo superiority of VMPNs over the individual components and an Alum-formulated vaccine manifests in higher neutralizing antibody titers, the promotion of a balanced IgG response, and the induction of a cellular immunity-CD4+ T cell responses to core proteins. The aqueous-based spontaneous co-assembly of antigens and immunopotentiating molecules enabled by a synthetic biodegradable carrier offers a simple and effective pathway to the development of polymer-based supramolecular nanovaccine systems.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chanh-Trung Nguyen, Van Phu Le, Thi Huong Le, Jeong Sook Kim, Sung Hoon Back, Kyo-In Koo
{"title":"Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers.","authors":"Chanh-Trung Nguyen, Van Phu Le, Thi Huong Le, Jeong Sook Kim, Sung Hoon Back, Kyo-In Koo","doi":"10.3390/jfb16010035","DOIUrl":"10.3390/jfb16010035","url":null,"abstract":"<p><p>This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver's intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations. The hepatocyte and endothelial cell scaffold treated with alginate lyase demonstrated the highest diffusion rate, along with enhanced albumin secretion (2.8 µg/mL) and urea synthesis (220 µg/mL) during the same period by day 10. A dense and interconnected endothelial cell network was observed as early as day 4 in the lyased coculture group. Furthermore, three-week implantation studies in rats showed a stable integration to the host with no adverse effects. This approach offers significant potential for advancing functional liver tissue replacements, combining accelerated diffusion, enhanced albumin secretion, improved urea synthesis, dense vascular network formation, and stable implantation outcomes.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lennart Fibranz, Wiebke Behrends, Katharina Wulf, Stefan Raggl, Lisa Kötter, Thomas Eickner, Soeren Schilp, Thomas Lenarz, Gerrit Paasche
{"title":"Effects of Microstructured and Anti-Inflammatory-Coated Cochlear Implant Electrodes on Fibrous Tissue Growth and Neuronal Survival.","authors":"Lennart Fibranz, Wiebke Behrends, Katharina Wulf, Stefan Raggl, Lisa Kötter, Thomas Eickner, Soeren Schilp, Thomas Lenarz, Gerrit Paasche","doi":"10.3390/jfb16010033","DOIUrl":"10.3390/jfb16010033","url":null,"abstract":"<p><p>Cochlear implants are well established devices for treating severe hearing loss. However, due to the trauma caused by the insertion of the electrode and the subsequent formation of connective tissue, their clinical effectiveness varies. The aim of the current study was to achieve a long-term reduction in connective tissue growth and impedance by combining surface patterns on the electrode array with a poly-L-lactide coating containing 20% diclofenac. Three groups of six guinea pigs each (control, structure, structure with diclofenac in the coating) were implanted for four weeks. The hearing thresholds were measured before implantation and after 28 days, and impedances were monitored over time. After histological preparation, connective tissue growth and spiral ganglion neuron (SGN) survival were quantified. The hearing thresholds and impedances increased over time in all groups, showing no significant differences. The treatment groups showed increased damage in the cochlea, which appeared to be caused by the elevated parts of the microstructures. This seems to be amplified by the trauma model used in the current study. The impedances correlated with connective tissue growth near the electrode contacts. In addition, SGN survival was negatively correlated with the presence of connective tissue, both of which highlight the importance of successfully reducing connective tissue formation after cochlear implantation.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sylwia Kiryk, Jan Kiryk, Jacek Matys, Maciej Dobrzyński
{"title":"The Influence of Resin Infiltration on the Shear Bond Strength of Orthodontic Brackets: A Systematic Review and Meta-Analysis.","authors":"Sylwia Kiryk, Jan Kiryk, Jacek Matys, Maciej Dobrzyński","doi":"10.3390/jfb16010032","DOIUrl":"10.3390/jfb16010032","url":null,"abstract":"<p><p>The quality of the enamel plays a critical role in the retention and performance of orthodontic brackets. This systematic review and meta-analysis aimed to evaluate the effect of resin infiltration pretreatment on the shear bond strength (SBS) of orthodontic brackets. An electronic search was conducted in October 2024 using PubMed, Web of Science (WoS), and Scopus databases, employing the keywords (resin infiltration AND bracket); (ICON AND bracket). The review adhered to PRISMA guidelines and utilized the PICO framework. Of the 143 articles initially identified, 63 underwent screening. Strict inclusion criteria were applied of which the most important were resin infiltration pretreatment, studies conducted on natural teeth and SBS evaluation. This left 19 studies for final analysis. The risk of bias was assessed using the checklist for quasi-experimental studies (Non-Randomized Experimental Studies) developed by the Joanna Briggs Institute (JBI). Among these, 13 studies used human teeth and 13 utilized Transbond XT as the adhesive. Metal brackets were predominantly examined (<i>n</i> = 17). The Adhesive Remnant Index (ARI) was assessed in 13 studies. Importantly, 11 studies concluded that resin infiltration significantly enhances SBS, 8 of which were conducted on human teeth. The meta-analysis revealed significantly higher SBS results when resin infiltrate was applied to healthy enamel. This finding underscores the dual benefits of resin infiltration: increased bond strength and the protection of enamel integrity during debonding procedures. The results suggest that resin infiltration not only improves the mechanical retention of orthodontic brackets but also serves as an enamel-preserving approach.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-Term Stability and Osteogenic Activity of Recycled Polysulfone-Calcium Silicate Bone Implants In Vitro.","authors":"Chi-Nan Chang, Yun-Ru Huang, Shinn-Jyh Ding","doi":"10.3390/jfb16010031","DOIUrl":"10.3390/jfb16010031","url":null,"abstract":"<p><p>Environmental protection issues have received widespread attention, making material recycling increasingly important. The upcycling of polysulfone (PSF) medical waste, recognized as a high-performance plastic with excellent mechanical properties, deserves promotion. While PSF is suitable for use as an orthopedic implant material, such as internal fixation, its osteogenesis capabilities must be enhanced. Mechanical stability, particularly over the long term, is a significant concern for bone implants in load-bearing applications. This study recycled PSF medical waste to create bone composites by incorporating osteogenic calcium silicate (CaSi) at three different contents: 10%, 20%, and 30%. We evaluated the phase, morphology, weight loss, and three-point bending strength of the PSF-based composites after they were soaked in dynamic simulated body fluid (SBF) at pH levels of 7.4 and 5.0 for up to 12 months. Human mesenchymal stem cells (hMSCs) were utilized to assess the osteogenic activity of these composites. Our findings revealed that, while the bending strength of PSF-based composites declined with prolonged exposure to SBF, the dissolution of CaSi particles led to a manageable weight loss of about 4% after 12 months, regardless of pH 7.4 or 5.0. Importantly, the incorporation of CaSi into the PSF matrix exhibited a positive effect on the attachment and proliferation of hMSCs. The levels of alkaline phosphatase (ALP) and calcium deposits directly correlated with the CaSi content, indicating superior osteogenic activity. Considering biostability and osteogenic ability, the 20% CaSi-PSF composite demonstrated promise as a candidate for load-bearing implant applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In-Seong Park, Hyun-Jung Kim, Jiyoung Kwon, Duck-Su Kim
{"title":"Comparative In Vitro Study of Sol-Gel-Derived Bioactive Glasses Incorporated into Dentin Adhesives: Effects on Remineralization and Mechanical Properties of Dentin.","authors":"In-Seong Park, Hyun-Jung Kim, Jiyoung Kwon, Duck-Su Kim","doi":"10.3390/jfb16010029","DOIUrl":"10.3390/jfb16010029","url":null,"abstract":"<p><p>To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol-gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology. The surface area was measured by the Brunauer-Emmett-Teller method. X-ray diffraction (XRD) analysis was performed to determine the crystalline structure of the BAGs. Adhesive surface analysis was performed after approximating each experimental dentin adhesive and demineralized dentin by using FE-SEM. The elastic modulus of the treated dentin was measured after BAG-containing dentin adhesive application. The sol-gel-derived BAGs exhibited larger surface areas (by 400-600 times) than conventional BAG, with BAG87 displaying the largest surface area. XRD analysis indicated more pronounced and rapid formation of hydroxyapatite in the sol-gel BAGs. Dentin with BAG87-containing adhesive exhibited the highest elastic modulus. The incorporation of sol-gel-derived BAGs, especially BAG87, into dentin adhesives enhances the remineralization and mechanical properties of adhesive-dentin interfaces.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First Clinical Evidence About the Use of a New Silver-Coated Titanium Alloy Instrumentation to Counteract Surgical Site Infection at the Spine Level.","authors":"Lucrezia Leggi, Silvia Terzi, Maria Sartori, Francesca Salamanna, Luca Boriani, Emanuela Asunis, Cristiana Griffoni, Gianluca Giavaresi, Alessandro Gasbarrini","doi":"10.3390/jfb16010030","DOIUrl":"10.3390/jfb16010030","url":null,"abstract":"<p><p><b>Background:</b> Surgical site infections (SSIs) following spinal instrumentation surgery are among the most concerning complications. This study is aimed at assessing the effectiveness of a new treatment approach for SSIs that includes a single-stage approach with the removal of the previous hardware, accurate debridement, and single-stage instrumentation using a silver fixation system (SFS) made of titanium alloy coated with silver (Norm Medical, Ankara, Turkey) by means of a retrospective observational study. <b>Materials and Methods:</b> The demographic data, type of surgery, comorbidities, pathogens, and treatment details of consecutive patients with an SSI who received the SFS between 2018 and 2021 were extracted from their medical records and analyzed. The patients treated with the SFS for primary pyogenic infections were excluded. The patients were re-evaluated at multiple endpoints in order to assess the rate of reinfection and the local and general complications. <b>Results:</b> Fifty-six patients were treated with the SFS and thirty-four patients met the inclusion criteria. Out of those 34 patients, the rate of infection recurrence or insurgence after the implantation of the SFS was 11.8%, with infection detected in 4 out of 34 cases and mechanical problems detected in 2 of the 34 cases (5.9%). The overall success rate in controlling infection recurrence or emergence was 88.2% (30 out of 34 cases). The overall survival rate of the SFS was 87%, 78%, and 71% at one, two, and three years, respectively. <b>Conclusions:</b> The surgical strategy with the SFS demonstrated promising outcomes in preventing infection recurrence or insurgence, with a low incidence of mechanical complications. However, further structured and comprehensive studies are essential for validating these initial findings.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Catarina Sousa, Rui Alvites, Bruna Lopes, Patrícia Sousa, Alícia Moreira, André Coelho, José Domingos Santos, Luís Atayde, Nuno Alves, Ana Colette Maurício
{"title":"Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances.","authors":"Ana Catarina Sousa, Rui Alvites, Bruna Lopes, Patrícia Sousa, Alícia Moreira, André Coelho, José Domingos Santos, Luís Atayde, Nuno Alves, Ana Colette Maurício","doi":"10.3390/jfb16010028","DOIUrl":"10.3390/jfb16010028","url":null,"abstract":"<p><p>The application of three-dimensional (3D) printing/bioprinting technologies and cell therapies has garnered significant attention due to their potential in the field of regenerative medicine. This paper aims to provide a comprehensive overview of 3D printing/bioprinting technology and cell therapies, highlighting their results in diverse medical applications, while also discussing the capabilities and limitations of their combined use. The synergistic combination of 3D printing and cellular therapies has been recognised as a promising and innovative approach, and it is expected that these technologies will progressively assume a crucial role in the treatment of various diseases and conditions in the foreseeable future. This review concludes with a forward-looking perspective on the future impact of these technologies, highlighting their potential to revolutionize regenerative medicine through enhanced tissue repair and organ replacement strategies.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominika Grygier, Piotr Kowalewski, Mariusz Opałka, Jakub J Słowiński, Mateusz Dziubek, Dariusz Pyka
{"title":"Analysis of the Feasibility of the OrthoNail Hybrid Intramedullary Implant in the Human Body with Respect to Material Durability.","authors":"Dominika Grygier, Piotr Kowalewski, Mariusz Opałka, Jakub J Słowiński, Mateusz Dziubek, Dariusz Pyka","doi":"10.3390/jfb16010027","DOIUrl":"10.3390/jfb16010027","url":null,"abstract":"<p><p>This study focuses on the development and evaluation of the OrthoNail hybrid intramedullary implant for lower limb lengthening in patients requiring significant skeletal reconstruction. The implant addresses the challenges in load-bearing during rehabilitation, providing a robust solution that is capable of supporting physiological loads. Mechanical tests, including axial compression, tension, torsion, and 3,4-point bending, determined the implant's load capacity and fatigue resistance, while finite element analysis assessed stress distributions in bone tissue and around screw holes during single-leg stance, with boundary conditions derived from Orthoload database data. The OrthoNail implant demonstrated excellent mechanical stability, sustaining torsional loads of up to 19.36 Nm at maximum elongation (80 mm) and 17.16 Nm at zero elongation. Under axial compression, it withstood forces of up to 1400 N, maintaining structural integrity. Fatigue testing revealed resilience under dynamic loading conditions for over 1,000,000 cycles at a load of 500 N, with no mechanical failure or material degradation observed. Stress concentrations near screw holes indicate areas for potential optimization. The findings indicate that the OrthoNail implant demonstrates excellent mechanical stability and is well-suited for clinical application, enabling early full weight-bearing during rehabilitation.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}