Nail Beisekenov, Bagdat Azamatov, Marzhan Sadenova, Dmitriy Dogadkin, Daniyar Kaliyev, Sergey Rudenko, Boris Syrnev
{"title":"Data-Driven Design and Additive Manufacturing of Patient-Specific Lattice Titanium Scaffolds for Mandibular Bone Reconstruction.","authors":"Nail Beisekenov, Bagdat Azamatov, Marzhan Sadenova, Dmitriy Dogadkin, Daniyar Kaliyev, Sergey Rudenko, Boris Syrnev","doi":"10.3390/jfb16090350","DOIUrl":null,"url":null,"abstract":"<p><p>The reconstruction of segmental bone defects requires patient-specific scaffolds that combine mechanical safety, biological functionality, and rapid manufacturing. We converted CT-derived mandibular geometry into a functionally graded Ti-6Al-4V lattice and optimised porosity, screw layout, and strut thickness through a cyber-physical loop that joins high-fidelity FEM, millisecond ANN, and a BN for uncertainty quantification. Fifteen candidate scaffolds were fabricated by direct metal laser sintering and hot isostatic pressing and were mechanically tested. FEM predicted stress and stiffness with 98% accuracy; the ANN reproduced these outputs with 94% fidelity while evaluating 10,000 designs in real time, and the BN limited failure probability to <3% under worst-case loads. The selected 55-65% porosity design reduced titanium use by 15%, shortened development time by 25% and raised multi-objective optimisation efficiency by 20% relative to a solid-plate baseline, while resisting a 600 N bite with a peak von Mises stress of 225 MPa and micromotion < 150 µm. Integrating physics-based simulation, AI speed, and probabilistic rigour yields a validated, additively manufactured scaffold that meets surgical timelines and biomechanical requirements, offering a transferable blueprint for functional scaffolds in bone and joint surgery.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090350","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The reconstruction of segmental bone defects requires patient-specific scaffolds that combine mechanical safety, biological functionality, and rapid manufacturing. We converted CT-derived mandibular geometry into a functionally graded Ti-6Al-4V lattice and optimised porosity, screw layout, and strut thickness through a cyber-physical loop that joins high-fidelity FEM, millisecond ANN, and a BN for uncertainty quantification. Fifteen candidate scaffolds were fabricated by direct metal laser sintering and hot isostatic pressing and were mechanically tested. FEM predicted stress and stiffness with 98% accuracy; the ANN reproduced these outputs with 94% fidelity while evaluating 10,000 designs in real time, and the BN limited failure probability to <3% under worst-case loads. The selected 55-65% porosity design reduced titanium use by 15%, shortened development time by 25% and raised multi-objective optimisation efficiency by 20% relative to a solid-plate baseline, while resisting a 600 N bite with a peak von Mises stress of 225 MPa and micromotion < 150 µm. Integrating physics-based simulation, AI speed, and probabilistic rigour yields a validated, additively manufactured scaffold that meets surgical timelines and biomechanical requirements, offering a transferable blueprint for functional scaffolds in bone and joint surgery.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.