{"title":"Integrating Additive and Traditional Manufacturing for Multiscale Bone Tissue Engineering Scaffolds.","authors":"Yixuan Zhu, Haotian Gao, Qingchen Qiao, Yafei Yuan, Dongyu Fang, Yuxing Bai, Qingsong Jiang","doi":"10.3390/jfb16090349","DOIUrl":null,"url":null,"abstract":"<p><p>Additive manufacturing (AM) has emerged as a cutting-edge technology for fabricating biomimetic scaffolds with controllable architectures and compositional diversity, showing great promise in the fields of bone tissue engineering (BTE) and regenerative medicine. However, due to limitations in printing resolution and single-process capabilities, AM alone struggles to replicate the complex multiscale hierarchical structures inherent in native bone. Traditional fabrication techniques provide valuable complementary strategies to address these limitations. This review systematically summarizes recent advances in the construction of heterogeneous scaffolds from a multiscale design perspective, encompassing macro-, meso-, and microscale approaches. Emphasis is placed on the integration of major AM techniques-such as extrusion-based and light-based printing-with conventional methods including freeze-drying, gas foaming, and electrospinning. Particular attention is given to emerging in situ fabrication strategies, such as in situ foaming and mineralization, which enable spatially resolved and functionally graded architectures. Furthermore, this review explores pathways for constructing multiscale-integrated scaffolds and examines the current challenges and opportunities in clinical translation. Collectively, this work provides a comprehensive framework to guide the development of next-generation bone tissue scaffolds with enhanced biological performance and translational potential.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090349","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) has emerged as a cutting-edge technology for fabricating biomimetic scaffolds with controllable architectures and compositional diversity, showing great promise in the fields of bone tissue engineering (BTE) and regenerative medicine. However, due to limitations in printing resolution and single-process capabilities, AM alone struggles to replicate the complex multiscale hierarchical structures inherent in native bone. Traditional fabrication techniques provide valuable complementary strategies to address these limitations. This review systematically summarizes recent advances in the construction of heterogeneous scaffolds from a multiscale design perspective, encompassing macro-, meso-, and microscale approaches. Emphasis is placed on the integration of major AM techniques-such as extrusion-based and light-based printing-with conventional methods including freeze-drying, gas foaming, and electrospinning. Particular attention is given to emerging in situ fabrication strategies, such as in situ foaming and mineralization, which enable spatially resolved and functionally graded architectures. Furthermore, this review explores pathways for constructing multiscale-integrated scaffolds and examines the current challenges and opportunities in clinical translation. Collectively, this work provides a comprehensive framework to guide the development of next-generation bone tissue scaffolds with enhanced biological performance and translational potential.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.