单片氧化锆与三种不同堆芯材料剪切粘结强度的比较评价。

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Ayben Şentürk, Bora Akat, Fehmi Gönüldaş, Onur Alp Halaçlı, Selin Kartal, Mehmet Ali Kılıçarslan
{"title":"单片氧化锆与三种不同堆芯材料剪切粘结强度的比较评价。","authors":"Ayben Şentürk, Bora Akat, Fehmi Gönüldaş, Onur Alp Halaçlı, Selin Kartal, Mehmet Ali Kılıçarslan","doi":"10.3390/jfb16090355","DOIUrl":null,"url":null,"abstract":"<p><p>This in vitro study aimed to evaluate and compare the shear bond strength (SBS) between monolithic zirconia (MZ) and different core build-up materials. Sixty cylindrical MZ specimens were fabricated and divided into three groups (<i>n</i> = 20) based on the type of core build-up material: nanohybrid composite resin (NHCR), glass ionomer cement (GIC), and zirconia-reinforced glass ionomer cement (zirconomer). All specimens were subjected to airborne-particle abrasion with aluminum oxide and bonded using a self-adhesive dual-cure resin cement. After 24 h of storage in distilled water at 37 °C, SBS testing was performed using a universal testing machine. Failure modes were examined under a stereomicroscope and classified as adhesive, cohesive, or mixed. The NHCR group exhibited the highest SBS values (48.32 ± 12.49 MPa), followed by the Zirkonomer group (14.19 ± 3.66 MPa), and the GIC group (10.37 ± 4.21 MPa). The SBS of NHCR was significantly higher than that of both Zirconomer and GIC (<i>p</i> < 0.001). Although no significant difference was found between Zirconomer and GIC, Zirconomer demonstrated higher mean bond strength. Within the limitations of this study, NHCR showed the highest bond strength to monolithic zirconia. Zirconomer performed better than conventional GIC; however, further investigations involving different surface treatments and long-term clinical conditions are recommended to enhance its bonding efficacy.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Evaluation of Shear Bond Strength Between Monolithic Zirconia and Three Different Core Build-Up Materials.\",\"authors\":\"Ayben Şentürk, Bora Akat, Fehmi Gönüldaş, Onur Alp Halaçlı, Selin Kartal, Mehmet Ali Kılıçarslan\",\"doi\":\"10.3390/jfb16090355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This in vitro study aimed to evaluate and compare the shear bond strength (SBS) between monolithic zirconia (MZ) and different core build-up materials. Sixty cylindrical MZ specimens were fabricated and divided into three groups (<i>n</i> = 20) based on the type of core build-up material: nanohybrid composite resin (NHCR), glass ionomer cement (GIC), and zirconia-reinforced glass ionomer cement (zirconomer). All specimens were subjected to airborne-particle abrasion with aluminum oxide and bonded using a self-adhesive dual-cure resin cement. After 24 h of storage in distilled water at 37 °C, SBS testing was performed using a universal testing machine. Failure modes were examined under a stereomicroscope and classified as adhesive, cohesive, or mixed. The NHCR group exhibited the highest SBS values (48.32 ± 12.49 MPa), followed by the Zirkonomer group (14.19 ± 3.66 MPa), and the GIC group (10.37 ± 4.21 MPa). The SBS of NHCR was significantly higher than that of both Zirconomer and GIC (<i>p</i> < 0.001). Although no significant difference was found between Zirconomer and GIC, Zirconomer demonstrated higher mean bond strength. Within the limitations of this study, NHCR showed the highest bond strength to monolithic zirconia. Zirconomer performed better than conventional GIC; however, further investigations involving different surface treatments and long-term clinical conditions are recommended to enhance its bonding efficacy.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16090355\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090355","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本体外实验旨在评价和比较单片氧化锆(MZ)与不同堆芯材料之间的剪切结合强度(SBS)。我们制作了60个圆柱形MZ试样,并根据堆芯材料的类型分为三组(n = 20):纳米复合树脂(NHCR)、玻璃离子水合物(GIC)和氧化锆增强玻璃离子水合物(zirconomer)。所有的试样都用氧化铝进行空气颗粒磨损,并使用自粘双固化树脂水泥进行粘合。在37°C蒸馏水中储存24 h后,使用通用试验机进行SBS测试。在体视显微镜下检查了失效模式,并将其分为粘接、内聚或混合。NHCR组SBS值最高(48.32±12.49 MPa),其次为Zirkonomer组(14.19±3.66 MPa), GIC组(10.37±4.21 MPa)。NHCR的SBS显著高于Zirconomer和GIC (p < 0.001)。虽然在Zirconomer和GIC之间没有发现显著差异,但Zirconomer表现出更高的平均结合强度。在本研究的限制范围内,NHCR与整体氧化锆的结合强度最高。锆合金性能优于常规GIC;然而,建议进一步研究不同的表面处理和长期临床条件,以提高其粘接效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Evaluation of Shear Bond Strength Between Monolithic Zirconia and Three Different Core Build-Up Materials.

This in vitro study aimed to evaluate and compare the shear bond strength (SBS) between monolithic zirconia (MZ) and different core build-up materials. Sixty cylindrical MZ specimens were fabricated and divided into three groups (n = 20) based on the type of core build-up material: nanohybrid composite resin (NHCR), glass ionomer cement (GIC), and zirconia-reinforced glass ionomer cement (zirconomer). All specimens were subjected to airborne-particle abrasion with aluminum oxide and bonded using a self-adhesive dual-cure resin cement. After 24 h of storage in distilled water at 37 °C, SBS testing was performed using a universal testing machine. Failure modes were examined under a stereomicroscope and classified as adhesive, cohesive, or mixed. The NHCR group exhibited the highest SBS values (48.32 ± 12.49 MPa), followed by the Zirkonomer group (14.19 ± 3.66 MPa), and the GIC group (10.37 ± 4.21 MPa). The SBS of NHCR was significantly higher than that of both Zirconomer and GIC (p < 0.001). Although no significant difference was found between Zirconomer and GIC, Zirconomer demonstrated higher mean bond strength. Within the limitations of this study, NHCR showed the highest bond strength to monolithic zirconia. Zirconomer performed better than conventional GIC; however, further investigations involving different surface treatments and long-term clinical conditions are recommended to enhance its bonding efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信