Zaixiang Zheng, Junnan Cui, Shutong Wu, Zhimin Cao, Pan Cao
{"title":"增强抗菌功效的工程金属-有机框架:合成方法、机理观点和多用途应用。","authors":"Zaixiang Zheng, Junnan Cui, Shutong Wu, Zhimin Cao, Pan Cao","doi":"10.3390/jfb16090353","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial contamination and the escalating crisis of antibiotic resistance represent pressing global public health threats, with approximately 4.95 million deaths linked to antimicrobial resistance (AMR) in 2019 and projections estimating up to 10 million annual fatalities by 2050. As third-generation antimicrobial materials, metal-organic frameworks (MOFs) have emerged as promising alternatives to conventional agents, leveraging their unique attributes such as high specific surface areas, tunable porosity, and controlled metal ion release kinetics. This review provides a systematic analysis of the foundational principles and core antibacterial mechanisms of MOFs, which include the sustained release of metal ions (e.g., Ag<sup>+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>), the generation of reactive oxygen species (ROS), and synergistic effects with encapsulated functional molecules. We highlight how these mechanisms underpin their efficacy across a range of applications. Rather than offering an exhaustive list of synthesis methods and metal compositions, this review focuses on clarifying structure-function relationships that enable MOF-based materials to outperform conventional antimicrobials. Their potential is particularly evident in several key areas: wound dressings and medical coatings that enhance tissue regeneration and prevent infections; targeted nanotherapeutics against drug-resistant bacteria; and functional coatings for food preservation and water disinfection. Despite existing challenges, including gaps in clinical translation, limited efficacy in complex multi-species infections, and incomplete mechanistic understanding, MOFs hold significant promise to revolutionize antimicrobial therapy. Through interdisciplinary optimization and advancements in translational research, MOFs are poised to drive a paradigm shift from \"passive defense\" to \"active ecological regulation\", offering a critical solution to mitigate the global AMR crisis.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470498/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineering Metal-Organic Frameworks for Enhanced Antimicrobial Efficacy: Synthesis Methodologies, Mechanistic Perspectives, and Versatile Applications.\",\"authors\":\"Zaixiang Zheng, Junnan Cui, Shutong Wu, Zhimin Cao, Pan Cao\",\"doi\":\"10.3390/jfb16090353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial contamination and the escalating crisis of antibiotic resistance represent pressing global public health threats, with approximately 4.95 million deaths linked to antimicrobial resistance (AMR) in 2019 and projections estimating up to 10 million annual fatalities by 2050. As third-generation antimicrobial materials, metal-organic frameworks (MOFs) have emerged as promising alternatives to conventional agents, leveraging their unique attributes such as high specific surface areas, tunable porosity, and controlled metal ion release kinetics. This review provides a systematic analysis of the foundational principles and core antibacterial mechanisms of MOFs, which include the sustained release of metal ions (e.g., Ag<sup>+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>), the generation of reactive oxygen species (ROS), and synergistic effects with encapsulated functional molecules. We highlight how these mechanisms underpin their efficacy across a range of applications. Rather than offering an exhaustive list of synthesis methods and metal compositions, this review focuses on clarifying structure-function relationships that enable MOF-based materials to outperform conventional antimicrobials. Their potential is particularly evident in several key areas: wound dressings and medical coatings that enhance tissue regeneration and prevent infections; targeted nanotherapeutics against drug-resistant bacteria; and functional coatings for food preservation and water disinfection. Despite existing challenges, including gaps in clinical translation, limited efficacy in complex multi-species infections, and incomplete mechanistic understanding, MOFs hold significant promise to revolutionize antimicrobial therapy. Through interdisciplinary optimization and advancements in translational research, MOFs are poised to drive a paradigm shift from \\\"passive defense\\\" to \\\"active ecological regulation\\\", offering a critical solution to mitigate the global AMR crisis.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470498/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16090353\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090353","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Engineering Metal-Organic Frameworks for Enhanced Antimicrobial Efficacy: Synthesis Methodologies, Mechanistic Perspectives, and Versatile Applications.
Bacterial contamination and the escalating crisis of antibiotic resistance represent pressing global public health threats, with approximately 4.95 million deaths linked to antimicrobial resistance (AMR) in 2019 and projections estimating up to 10 million annual fatalities by 2050. As third-generation antimicrobial materials, metal-organic frameworks (MOFs) have emerged as promising alternatives to conventional agents, leveraging their unique attributes such as high specific surface areas, tunable porosity, and controlled metal ion release kinetics. This review provides a systematic analysis of the foundational principles and core antibacterial mechanisms of MOFs, which include the sustained release of metal ions (e.g., Ag+, Cu2+, Zn2+), the generation of reactive oxygen species (ROS), and synergistic effects with encapsulated functional molecules. We highlight how these mechanisms underpin their efficacy across a range of applications. Rather than offering an exhaustive list of synthesis methods and metal compositions, this review focuses on clarifying structure-function relationships that enable MOF-based materials to outperform conventional antimicrobials. Their potential is particularly evident in several key areas: wound dressings and medical coatings that enhance tissue regeneration and prevent infections; targeted nanotherapeutics against drug-resistant bacteria; and functional coatings for food preservation and water disinfection. Despite existing challenges, including gaps in clinical translation, limited efficacy in complex multi-species infections, and incomplete mechanistic understanding, MOFs hold significant promise to revolutionize antimicrobial therapy. Through interdisciplinary optimization and advancements in translational research, MOFs are poised to drive a paradigm shift from "passive defense" to "active ecological regulation", offering a critical solution to mitigate the global AMR crisis.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.