{"title":"基于静电排斥和疏水相互作用的抗膨胀抗菌水凝胶用于人体运动传感。","authors":"Zexing Deng, Litong Shen, Qiwei Cheng, Ying Li, Tianming Du, Xin Zhao","doi":"10.3390/jfb16090346","DOIUrl":null,"url":null,"abstract":"<p><p>The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these challenges, anti-swelling, antibacterial, and ionically conductive hydrogels were built through free radical polymerization. The preparation was conducted using a monomer mixture comprising acrylic acid (AA), the antibacterial zwitterionic compound [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), and the hydrophobic monomer lauryl methacrylate (LMA). The protonation of SBMA by AA enables electrostatic repulsion, thereby imparting anti-swelling properties to the hydrogel. The introduction of hydrophobic LMA components further enhances the anti-swelling and mechanical performance of hydrogel. The resulting hydrogel exhibits excellent anti-swelling property with a swelling ratio of 59.36% after 120 h and good mechanical performance with a tensile strength of 158 kPa, an elongation at break of 176%, and a compressive strength of 0.37 MPa at 80% strain. In addition, hydrogels possess superior sensing performance for strain sensing with a gauge factor of 1.315 within 40-60% of strain, 330 ms of response time, and 177 ms of recovery time. Furthermore, the hydrogel is capable of monitoring human motion and physiological signals. These attributes make it highly suitable for wearable sensors and biomedical monitoring applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470998/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anti-Swelling Antibacterial Hydrogels Based on Electrostatic Repulsion and Hydrophobic Interactions for Human Motion Sensing.\",\"authors\":\"Zexing Deng, Litong Shen, Qiwei Cheng, Ying Li, Tianming Du, Xin Zhao\",\"doi\":\"10.3390/jfb16090346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these challenges, anti-swelling, antibacterial, and ionically conductive hydrogels were built through free radical polymerization. The preparation was conducted using a monomer mixture comprising acrylic acid (AA), the antibacterial zwitterionic compound [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), and the hydrophobic monomer lauryl methacrylate (LMA). The protonation of SBMA by AA enables electrostatic repulsion, thereby imparting anti-swelling properties to the hydrogel. The introduction of hydrophobic LMA components further enhances the anti-swelling and mechanical performance of hydrogel. The resulting hydrogel exhibits excellent anti-swelling property with a swelling ratio of 59.36% after 120 h and good mechanical performance with a tensile strength of 158 kPa, an elongation at break of 176%, and a compressive strength of 0.37 MPa at 80% strain. In addition, hydrogels possess superior sensing performance for strain sensing with a gauge factor of 1.315 within 40-60% of strain, 330 ms of response time, and 177 ms of recovery time. Furthermore, the hydrogel is capable of monitoring human motion and physiological signals. These attributes make it highly suitable for wearable sensors and biomedical monitoring applications.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16090346\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090346","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Anti-Swelling Antibacterial Hydrogels Based on Electrostatic Repulsion and Hydrophobic Interactions for Human Motion Sensing.
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these challenges, anti-swelling, antibacterial, and ionically conductive hydrogels were built through free radical polymerization. The preparation was conducted using a monomer mixture comprising acrylic acid (AA), the antibacterial zwitterionic compound [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), and the hydrophobic monomer lauryl methacrylate (LMA). The protonation of SBMA by AA enables electrostatic repulsion, thereby imparting anti-swelling properties to the hydrogel. The introduction of hydrophobic LMA components further enhances the anti-swelling and mechanical performance of hydrogel. The resulting hydrogel exhibits excellent anti-swelling property with a swelling ratio of 59.36% after 120 h and good mechanical performance with a tensile strength of 158 kPa, an elongation at break of 176%, and a compressive strength of 0.37 MPa at 80% strain. In addition, hydrogels possess superior sensing performance for strain sensing with a gauge factor of 1.315 within 40-60% of strain, 330 ms of response time, and 177 ms of recovery time. Furthermore, the hydrogel is capable of monitoring human motion and physiological signals. These attributes make it highly suitable for wearable sensors and biomedical monitoring applications.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.