Liviu-Coriolan Misca, Cristian Constantin Croicu, Adrian Emil Lazarescu, Mihai-Alexandru Sandesc, Jenel Marian Patrascu, Sorin Florescu, Jenel Marian Patrascu
{"title":"Original Locking Rod System Designed for Diaphyseal Fractures of Long Bones.","authors":"Liviu-Coriolan Misca, Cristian Constantin Croicu, Adrian Emil Lazarescu, Mihai-Alexandru Sandesc, Jenel Marian Patrascu, Sorin Florescu, Jenel Marian Patrascu","doi":"10.3390/jfb16090348","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction</b>: Intramedullary nailing is widely used for long bone fractures. Traditional systems are reliable, but they present some complications regarding lack of modularity or possible growth plate damage. <b>Methods</b>: A novel locking rod-screw system featuring a central rod and a grooved screw with a secondary interlocking mechanism was developed and tested. Mechanical testing followed ASTM F543 and ISO 6475 standards using a 3.0 mm steel alloy prototype. <b>Results</b>: The system withstood mechanical testing >200,000 cycles at loads up to 200 N with no rates of failure or loosening, significantly outperforming other implants of the same size (3.0 mm TENS). <b>Conclusions</b>: The proposed implant demonstrates superior biomechanical performance in vitro, enabled by its unique hollow screw and secondary locking configuration. This modular and minimally invasive system shows promise for use in cases of smaller long bones, personalized paediatric fractures, and all types of diaphyseal fractures, but does warrant in vivo validation.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090348","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Intramedullary nailing is widely used for long bone fractures. Traditional systems are reliable, but they present some complications regarding lack of modularity or possible growth plate damage. Methods: A novel locking rod-screw system featuring a central rod and a grooved screw with a secondary interlocking mechanism was developed and tested. Mechanical testing followed ASTM F543 and ISO 6475 standards using a 3.0 mm steel alloy prototype. Results: The system withstood mechanical testing >200,000 cycles at loads up to 200 N with no rates of failure or loosening, significantly outperforming other implants of the same size (3.0 mm TENS). Conclusions: The proposed implant demonstrates superior biomechanical performance in vitro, enabled by its unique hollow screw and secondary locking configuration. This modular and minimally invasive system shows promise for use in cases of smaller long bones, personalized paediatric fractures, and all types of diaphyseal fractures, but does warrant in vivo validation.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.