Interdisciplinary Sciences: Computational Life Sciences最新文献

筛选
英文 中文
Prediction of Multimorbidity Network Evolution in Middle-Aged and Elderly Population Based on CE-GCN.
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-02-10 DOI: 10.1007/s12539-024-00685-0
Yushi Che, Yiqiao Wang
{"title":"Prediction of Multimorbidity Network Evolution in Middle-Aged and Elderly Population Based on CE-GCN.","authors":"Yushi Che, Yiqiao Wang","doi":"10.1007/s12539-024-00685-0","DOIUrl":"https://doi.org/10.1007/s12539-024-00685-0","url":null,"abstract":"<p><strong>Purpose: </strong>With the evolving disease spectrum, chronic diseases have emerged as a primary burden and a leading cause of mortality. Due to the aging population and the nature of chronic illnesses, patients often suffer from multimorbidity. Predicting the likelihood of these patients developing specific diseases in the future based on their current health status and age factors is a crucial task in multimorbidity research.</p><p><strong>Methods: </strong>We propose an algorithm, CE-GCN, which integrates age sequence and embeds Graph Convolutional Network (GCN) into Gated Recurrent Unit (GRU), utilizing the topological feature of network common neighbors to predict links in dynamic complex networks. First, we constructed a disease evolution network spanning from ages 45 to 90 years old using disease information from 3333 patients. Then, we introduced an innovative approach for link prediction aimed at uncovering relationships between various diseases. This method takes into account patients' age to construct the evolutionary structure of the disease network, thereby predicting the connections between chronic diseases.</p><p><strong>Results: </strong>Results from experiments conducted on real networks indicate that our model surpasses others regarding both MRR and MAP. The proposed method accurately reveals associations between diseases and effectively captures future disease risks.</p><p><strong>Conclusion: </strong>Our model can serve as an objective and convenient computer-aided tool to identify hidden relationships between diseases in order to assist healthcare professionals in taking early disease interventions, which can substantially lower the costs associated with treating multimorbidity and enhance the quality of life for patients suffering from chronic conditions.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-View Feature-Based Interpretable Deep Learning Framework for Drug-Drug Interaction Prediction.
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-02-03 DOI: 10.1007/s12539-025-00687-6
Zihui Cheng, Zhaojing Wang, Xianfang Tang, Xinrong Hu, Fei Yang, Xiaoyun Yan
{"title":"A Multi-View Feature-Based Interpretable Deep Learning Framework for Drug-Drug Interaction Prediction.","authors":"Zihui Cheng, Zhaojing Wang, Xianfang Tang, Xinrong Hu, Fei Yang, Xiaoyun Yan","doi":"10.1007/s12539-025-00687-6","DOIUrl":"https://doi.org/10.1007/s12539-025-00687-6","url":null,"abstract":"<p><p>Drug-drug interactions (DDIs) can result in deleterious consequences when patients take multiple medications simultaneously, emphasizing the critical need for accurate DDI prediction. Computational methods for DDI prediction have garnered recent attention. However, current approaches concentrate solely on single-view features, such as atomic-view or substructure-view features, limiting predictive capacity. The scarcity of research on interpretability studies based on multi-view features is crucial for tracing interactions. Addressing this gap, we present MI-DDI, a multi-view feature-based interpretable deep learning framework for DDI. To fully extract multi-view features, we employ a Message Passing Neural Network (MPNN) to learn atomic features from molecular graphs generated by RDkit, and transformer encoders are used to learn substructure-view embeddings from drug SMILES simultaneously. These atomic-view and substructure-view features are then amalgamated into a holistic drug embedding matrix. Subsequently, an intricately designed interaction module not only establishes a tractable path for understanding interactions but also directly informs the construction of weight matrices, enabling precise and interpretable interaction predictions. Validation on the BIOSNAP dataset and DrugBank dataset demonstrates MI-DDI's superiority. It surpasses the current benchmarks by a substantial average of 3% on BIOSNAP and 1% on DrugBank. Additional experiments underscore the significance of atomic-view information for DDI prediction and confirm that our interaction module indeed learns more effective information for DDI prediction. The source codes are available at https://github.com/ZihuiCheng/MI-DDI .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Multi-Kernel Graph Neural Network for Drug-Drug Interaction Prediction.
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-01-28 DOI: 10.1007/s12539-024-00684-1
Linqian Zhao, Junliang Shang, Xianghan Meng, Xin He, Yuanyuan Zhang, Jin-Xing Liu
{"title":"Adaptive Multi-Kernel Graph Neural Network for Drug-Drug Interaction Prediction.","authors":"Linqian Zhao, Junliang Shang, Xianghan Meng, Xin He, Yuanyuan Zhang, Jin-Xing Liu","doi":"10.1007/s12539-024-00684-1","DOIUrl":"https://doi.org/10.1007/s12539-024-00684-1","url":null,"abstract":"<p><p> Combination therapy, which synergistically enhances treatment efficacy and inhibits disease progression through the combined effects of multiple drugs, has emerged as a mainstream approach for treating complex diseases and alleviating symptoms. However, drug-drug interactions (DDIs) can sometimes lead to adverse reactions, potentially endangering lives. Therefore, developing efficient and accurate DDI prediction methods is crucial for elucidating drug mechanisms and preventing side effects. Current prediction methods often focus solely on the presence of interactions between drugs when constructing DDI graphs, neglecting the specific types of DDIs. This oversight can result in a decline in predictive performance. To address this issue, we propose an Adaptive Multi-Kernel Graph Neural Network (AMKGNN) for DDI prediction. AMKGNN differentiates DDIs into increase-type and decrease-type interactions, constructing separate increased DDI and decreased DDI graphs as convolutional kernels. AMKGNN employs a graph kernel learning mechanism that adaptively determines the optimal threshold between high-frequency and low-frequency signals in the network to capture node embeddings. Initially, AMKGNN learns drug embedding representations based on these two graph convolutional kernels and various drug features. These representations are then concatenated and input into a deep neural network to predict potential DDIs. The results show that our model achieved AUC and AUPR values above 90% across three sub-tasks on two datasets, significantly outperforming the other five comparison models. Furthermore, ablation experiments and case studies validate the superiority of AMKGNN.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforced Collaborative-Competitive Representation for Biomedical Image Recognition. 生物医学图像识别的强化协作-竞争表示。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-01-22 DOI: 10.1007/s12539-024-00683-2
Junwei Jin, Songbo Zhou, Yanting Li, Tanxin Zhu, Chao Fan, Hua Zhang, Peng Li
{"title":"Reinforced Collaborative-Competitive Representation for Biomedical Image Recognition.","authors":"Junwei Jin, Songbo Zhou, Yanting Li, Tanxin Zhu, Chao Fan, Hua Zhang, Peng Li","doi":"10.1007/s12539-024-00683-2","DOIUrl":"https://doi.org/10.1007/s12539-024-00683-2","url":null,"abstract":"<p><p>Artificial intelligence technology has demonstrated remarkable diagnostic efficacy in modern biomedical image analysis. However, the practical application of artificial intelligence is significantly limited by the presence of similar pathologies among different diseases and the diversity of pathologies within the same disease. To address this issue, this paper proposes a reinforced collaborative-competitive representation classification (RCCRC) method. RCCRC enhances the contribution of different classes by introducing dual competitive constraints into the objective function. The first constraint integrates the collaborative space representation akin to holistic data, promoting the representation contribution of similar classes. The second constraint introduces specific class subspace representations to encourage competition among all classes, enhancing the discriminative nature of representation vectors. By unifying these two constraints, RCCRC effectively explores both global and specific data features in the reconstruction space. Extensive experiments on various biomedical image databases are conducted to exhibit the advantage of the proposed method in comparison with several state-of-the-art classification algorithms.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstructing Waddington Landscape from Cell Migration and Proliferation. 从细胞迁移和增殖重构沃丁顿景观。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-01-07 DOI: 10.1007/s12539-024-00686-z
Yourui Han, Bolin Chen, Zhongwen Bi, Jianjun Zhang, Youpeng Hu, Jun Bian, Ruiming Kang, Xuequn Shang
{"title":"Reconstructing Waddington Landscape from Cell Migration and Proliferation.","authors":"Yourui Han, Bolin Chen, Zhongwen Bi, Jianjun Zhang, Youpeng Hu, Jun Bian, Ruiming Kang, Xuequn Shang","doi":"10.1007/s12539-024-00686-z","DOIUrl":"https://doi.org/10.1007/s12539-024-00686-z","url":null,"abstract":"<p><p>The Waddington landscape was initially proposed to depict cell differentiation, and has been extended to explain phenomena such as reprogramming. The landscape serves as a concrete representation of cellular differentiation potential, yet the precise representation of this potential remains an unsolved problem, posing significant challenges to reconstructing the Waddington landscape. The characterization of cellular differentiation potential relies on transcriptomic signatures of known markers typically. Numerous computational models based on various energy indicators, such as Shannon entropy, have been proposed. While these models can effectively characterize cellular differentiation potential, most of them lack corresponding dynamical interpretations, which are crucial for enhancing our understanding of cell fate transitions. Therefore, from the perspective of cell migration and proliferation, a feasible framework was developed for calculating the dynamically interpretable energy indicator to reconstruct Waddington landscape based on sparse autoencoders and the reaction diffusion advection equation. Within this framework, typical cellular developmental processes, such as hematopoiesis and reprogramming processes, were dynamically simulated and their corresponding Waddington landscapes were reconstructed. Furthermore, dynamic simulation and reconstruction were also conducted for special developmental processes, such as embryogenesis and Epithelial-Mesenchymal Transition process. Ultimately, these diverse cell fate transitions were amalgamated into a unified Waddington landscape.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields. 基于残差图卷积网络和条件随机场的微生物-药物关联预测。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-01-07 DOI: 10.1007/s12539-024-00678-z
Xiaoxin Du, Jingwei Li, Bo Wang, Jianfei Zhang, Tongxuan Wang, Junqi Wang
{"title":"NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields.","authors":"Xiaoxin Du, Jingwei Li, Bo Wang, Jianfei Zhang, Tongxuan Wang, Junqi Wang","doi":"10.1007/s12539-024-00678-z","DOIUrl":"https://doi.org/10.1007/s12539-024-00678-z","url":null,"abstract":"<p><p>The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed. Then, a Graph Convolutional Network incorporating a fusion residual network mechanism (REGCN) is utilized to learn meaningful high-order similarity features. In addition, conditional random fields (CRF) are applied to ensure that microbes and drugs have similar feature embeddings. Finally, unobserved microbe-drug associations are scored based on combined embeddings. The experimental findings demonstrate that the NRGCNMDA approach outperforms several existing deep learning methods, and its AUC and AUPR values are 95.16% and 93.02%, respectively. The case study demonstrates that NRGCNMDA accurately predicts drugs associated with Enterococcus faecalis and Listeria monocytogenes, as well as microbes associated with ibuprofen and tetracycline.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Domain Adaptive Interpretable Substructure-Aware Graph Attention Network for Drug-Drug Interaction Prediction. 用于药物-药物相互作用预测的领域自适应可解释子结构感知图注意网络。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-01-07 DOI: 10.1007/s12539-024-00680-5
Qi Zhang, Yuxiao Wei, Liwei Liu
{"title":"A Domain Adaptive Interpretable Substructure-Aware Graph Attention Network for Drug-Drug Interaction Prediction.","authors":"Qi Zhang, Yuxiao Wei, Liwei Liu","doi":"10.1007/s12539-024-00680-5","DOIUrl":"https://doi.org/10.1007/s12539-024-00680-5","url":null,"abstract":"<p><p>Accurate prediction of drug-drug interaction (DDI) is essential to improve clinical efficacy, avoid adverse effects of drug combination therapy, and enhance drug safety. Recently researchers have developed several computer-aided methods for DDI prediction. However, these methods lack the substructural features that are critical to drug interactions and are not effective in generalizing across domains and different distribution data. In this work, we present SAGAN, a domain adaptive interpretable substructure-aware graph attention network for DDI prediction. Based on attention mechanism and unsupervised clustering algorithm, we propose a new substructure segmentation method, which segments the drug molecule into multiple substructures, learns the mechanism of drug interaction from the perspective of interaction, and identifies important interaction regions between drugs. To enhance the generalization ability of the model, we improve and apply a conditional domain adversarial network to achieve cross-domain generalization by alternately optimizing the cross-entropy loss on the source domain and the adversarial loss of the domain discriminator. We evaluate and compare SAGAN with the state-of-the-art DDI prediction model on four real-world datasets for both in-domain and cross-domain scenarios, and show that SAGAN achieves the best overall performance. Moreover, the visualization results of the model show that SAGAN has achieved pharmacologically significant substructure extraction, which can help drug developers screen for some undiscovered local interaction sites, and provide important information for further drug structure optimization. The codes and datasets are available online at https://github.com/wyx2012/SAGAN .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MTGGF: A Metabolism Type-Aware Graph Generative Model for Molecular Metabolite Prediction. MTGGF:一种代谢类型感知的分子代谢物预测图生成模型。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-01-06 DOI: 10.1007/s12539-024-00681-4
Peng-Cheng Zhao, Xue-Xin Wei, Qiong Wang, Hao-Yang Wang, Bing-Xue Du, Jia-Ning Li, Bei Zhu, Hui Yu, Jian-Yu Shi
{"title":"MTGGF: A Metabolism Type-Aware Graph Generative Model for Molecular Metabolite Prediction.","authors":"Peng-Cheng Zhao, Xue-Xin Wei, Qiong Wang, Hao-Yang Wang, Bing-Xue Du, Jia-Ning Li, Bei Zhu, Hui Yu, Jian-Yu Shi","doi":"10.1007/s12539-024-00681-4","DOIUrl":"https://doi.org/10.1007/s12539-024-00681-4","url":null,"abstract":"<p><p>Metabolism in vivo turns small molecules (e.g., drugs) into metabolites (new molecules), which brings unexpected safety issues in drug development. However, it is costly to determine metabolites by biological assays. Recent computational methods provide new promising approaches by predicting possible metabolites. Rule-based methods utilize predefined reaction-derived rules to infer metabolites. However, they are powerless to new metabolic reaction patterns. In contrast, rule-free methods leverage sequence-to-sequence machine translation to generate metabolites. Nevertheless, they are insufficient to characterize molecule structures, and bear weak interpretability. To address these issues in rule-free methods, this manuscript proposes a novel metabolism type-aware graph generative framework (MTGGF) for molecular metabolite prediction. It contains a two-stage learning process, including a pre-training on a large general chemical reaction dataset, and a fine-tuning on three smaller type-specific metabolic reaction datasets. Its core, an elaborate graph-to-graph generative model, treats both atoms and bonds as bipartite vertices, and molecules as bipartite graphs, such that it can embed rich information of molecule structures and ensure the integrity of generated metabolite structures. The comparison with state-of-the-art methods demonstrates its superiority. Furthermore, the ablation study validates the contributions of its two graph encoding components and its reaction-type-specific fine-tuning models. More importantly, based on interactive attention between a molecule and its metabolites, the case studies on five approved drugs reveal that there exist crucial substructures specific to metabolism types. It is anticipated that this framework can boost the risk evaluation of drug metabolites. The codes are available at https://github.com/zpczaizheli/Metabolite .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UltraNet: Unleashing the Power of Simplicity for Accurate Medical Image Segmentation. UltraNet:释放简单的力量,实现准确的医学图像分割。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-12-27 DOI: 10.1007/s12539-024-00682-3
Ziyi Han, Yuanyuan Zhang, Lin Liu, Yulin Zhang
{"title":"UltraNet: Unleashing the Power of Simplicity for Accurate Medical Image Segmentation.","authors":"Ziyi Han, Yuanyuan Zhang, Lin Liu, Yulin Zhang","doi":"10.1007/s12539-024-00682-3","DOIUrl":"https://doi.org/10.1007/s12539-024-00682-3","url":null,"abstract":"<p><p>The imperative development of point-of-care diagnosis for accurate and rapid medical image segmentation, has become increasingly urgent in recent years. Although some pioneering work has applied complex modules to improve segmentation performance, resulting models are often heavy, which is not practical for the modern clinical setting of point-of-care diagnosis. To address these challenges, we propose UltraNet, a state-of-the-art lightweight model that achieves competitive performance in segmenting multiple parts of medical images with the lowest parameters and computational complexity. To extract a sufficient amount of feature information and replace cumbersome modules, the Shallow Focus Float Block (ShalFoFo) and the Dual-stream Synergy Feature Extraction (DuSem) are respectively proposed at both shallow and deep levels. ShalFoFo is designed to capture finer-grained features containing more pixels, while DuSem is capable of extracting distinct deep semantic features from two different perspectives. By jointly utilizing them, the accuracy and stability of UltraNet segmentation results are enhanced. To evaluate performance, UltraNet's generalization ability was assessed on five datasets with different tasks. Compared to UNet, UltraNet reduces the parameters and computational complexity by 46 times and 26 times, respectively. Experimental results demonstrate that UltraNet achieves a state-of-the-art balance among parameters, computational complexity, and segmentation performance. Codes are available at https://github.com/Ziii1/UltraNet .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BiGM-lncLoc: Bi-level Multi-Graph Meta-Learning for Predicting Cell-Specific Long Noncoding RNAs Subcellular Localization. BiGM-lncLoc:预测细胞特异性长链非编码rna亚细胞定位的双水平多图元学习。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-12-26 DOI: 10.1007/s12539-024-00679-y
Xi Deng, Lin Liu
{"title":"BiGM-lncLoc: Bi-level Multi-Graph Meta-Learning for Predicting Cell-Specific Long Noncoding RNAs Subcellular Localization.","authors":"Xi Deng, Lin Liu","doi":"10.1007/s12539-024-00679-y","DOIUrl":"https://doi.org/10.1007/s12539-024-00679-y","url":null,"abstract":"<p><p>The precise spatiotemporal expression of long noncoding RNAs (lncRNAs) plays a pivotal role in biological regulation, and aberrant expression of lncRNAs in different subcellular localizations has been intricately linked to the onset and progression of a variety of cancers. Computational methods provide effective means for predicting lncRNA subcellular localization, but current studies either ignore cell line and tissue specificity or the correlation and shared information among cell lines. In this study, we propose a novel approach, BiGM-lncLoc, treating the prediction of lncRNA subcellular localization across cell lines as a multi-graph meta-learning task. Our investigation involves two categories of data: the localization data of nucleotide sequences in different cell lines and cell line expression data. BiGM-lncLoc comprises a cell line-specific optimization network learning specific knowledge from cell line expression data and a graph neural network optimized across cell lines. Subsequently, the specific and shared knowledge acquired through bi-level optimization is applied to a new cell-line prediction task without the need for re-training or fine-tuning. Additionally, through key feature analysis of the impact of different nucleotide combinations on the model, we confirm the necessity of cell line-specific studies based on correlation analysis. Finally, experiments conducted on various cell lines with different data sizes indicate that BiGM-lncLoc outperforms other methods in terms of prediction accuracy, with an average accuracy of 97.7%. After removing overlapping samples to ensure data independence for each cell line, the accuracy ranged from 82.4% to 94.7%, still surpassing existing models. Our code can be found at https://github.com/BioCL1/BiGM-lncLoc .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信