Generation-Based Few-Shot BioNER via Local Knowledge Index and Dual Prompts.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Weixin Li, Hong Wang, Wei Li, Jun Zhao, Yanshen Sun
{"title":"Generation-Based Few-Shot BioNER via Local Knowledge Index and Dual Prompts.","authors":"Weixin Li, Hong Wang, Wei Li, Jun Zhao, Yanshen Sun","doi":"10.1007/s12539-025-00709-3","DOIUrl":null,"url":null,"abstract":"<p><p>Few-shot Biomedical Named Entity Recognition (BioNER) presents significant challenges due to limited training data and the presence of nested and discontinuous entities. To tackle these issues, a novel approach GKP-BioNER, Generation-based Few-Shot BioNER via Local Knowledge Index and Dual Prompts, is proposed. It redefines BioNER as a generation task by integrating hard and soft prompts. Specifically, GKP-BioNER constructs a localized knowledge index using a Wikipedia dump, facilitating the retrieval of semantically relevant texts to the original sentence. These texts are then reordered to prioritize the most semantically relevant content to the input data, serving as hard prompts. This helps the model to address challenges demanding domain-specific insights. Simultaneously, GKP-BioNER preserves the integrity of the pre-trained models while introducing learnable parameters as soft prompts to guide the self-attention layer, allowing the model to adapt to the context. Moreover, a soft prompt mechanism is designed to support knowledge transfer across domains. Extensive experiments on five datasets demonstrate that GKP-BioNER significantly outperforms eight state-of-the-art methods. It shows robust performance in low-resource and complex scenarios across various domains, highlighting its strength in knowledge transfer and broad applicability.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00709-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot Biomedical Named Entity Recognition (BioNER) presents significant challenges due to limited training data and the presence of nested and discontinuous entities. To tackle these issues, a novel approach GKP-BioNER, Generation-based Few-Shot BioNER via Local Knowledge Index and Dual Prompts, is proposed. It redefines BioNER as a generation task by integrating hard and soft prompts. Specifically, GKP-BioNER constructs a localized knowledge index using a Wikipedia dump, facilitating the retrieval of semantically relevant texts to the original sentence. These texts are then reordered to prioritize the most semantically relevant content to the input data, serving as hard prompts. This helps the model to address challenges demanding domain-specific insights. Simultaneously, GKP-BioNER preserves the integrity of the pre-trained models while introducing learnable parameters as soft prompts to guide the self-attention layer, allowing the model to adapt to the context. Moreover, a soft prompt mechanism is designed to support knowledge transfer across domains. Extensive experiments on five datasets demonstrate that GKP-BioNER significantly outperforms eight state-of-the-art methods. It shows robust performance in low-resource and complex scenarios across various domains, highlighting its strength in knowledge transfer and broad applicability.

基于局部知识索引和双提示的基于代的少射生物识别。
由于有限的训练数据以及嵌套和不连续实体的存在,少量生物医学命名实体识别(BioNER)提出了重大挑战。为了解决这些问题,提出了一种基于局部知识索引和双提示的基于代的少针生物识别方法GKP-BioNER。它通过集成硬提示和软提示将BioNER重新定义为生成任务。具体来说,GKP-BioNER使用维基百科转储构建了一个本地化的知识索引,便于检索与原始句子语义相关的文本。然后对这些文本进行重新排序,以优先考虑与输入数据语义最相关的内容,作为硬提示。这有助于模型处理需要特定领域洞察力的挑战。同时,GKP-BioNER保留了预训练模型的完整性,同时引入了可学习的参数作为软提示来引导自注意层,允许模型适应上下文。此外,还设计了软提示机制,支持跨领域知识转移。在5个数据集上进行的大量实验表明,GKP-BioNER显著优于8种最先进的方法。该方法在多领域低资源复杂场景下表现出稳健的性能,突出了知识转移的优势和广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信